Skip to main content
Log in

Thermal computations of temperature distribution and bulb heat transfer in an automobile headlamp

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, experimental and numerical analysis was performed to define thermal deformation inside the head lamp because of usage plastic materials and thermal loads. Buoyancy, radiation and conjugate effects were considered. Velocity and temperature distributions were obtained and possible hot points and condense regions can be determined. Nusselt number distribution on cylindrical bulb were computed and compared with literature. Relatively important heat transfer increase in natural convection was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c0 (m/s):

Speed of light in vacuum

β (1/K):

Thermal expansion

D (m):

Diameter

g (m/s2):

Gravitational acceleration

h (J s):

Planck’s constant

H (J):

Enthalpy

Iλb [W/(m2 nm)]:

Spectral hemispherical blackbody intensity

Iλ [W/(m2 nm sr)]:

Spectral radiation intensity

K (J/K):

Boltzmann constant

k [W/(m K)]:

Thermal conductivity

P (Pa):

Pressure

q (W/m2):

Radiative flux vector

S:

Position vector

T (K):

Temperature, thermocouple

u (m/s):

Velocity vector

α (1/m):

Absorptivity

λ (m):

Wavelength

ν (m2/s):

Kinematic viscosity

ρ (kg/m3):

Density

τ (N/m2):

Stress tensor

ω (sr):

Solid angle

b:

Blackbody

buoy:

Buoyancy

rad:

Radiative

ref:

Reference

λ:

Spectral

References

  1. Derlofske JV, Bullough JD, Gribbin C (2007) Comfort and visibility characteristics of spectrally tuned high intensity discharge forward lighting systems. Eur J Sci Res 17(1):73–84

    Google Scholar 

  2. Honeywill T (2007) Simulation sees. Automotive Engineer (-) (December) 32–33

  3. Bauer H (1999) Automotive electric/electronic systems lighting technology. Editor-in-Chief: Horst Bauer Bosch GmbH Stuttgart

  4. Wulf J, Reich A (2002) Temperature loads in headlamps. SAE World Congress and Exhibition Detroit. doi:10.4271/2002-01-0912

  5. Sivak M, Schoettle B, Flannagan MJ (2006) Mercury-free HID lamps: glare and colour rendering. Light Res Technol 38(1):33–40

    Article  Google Scholar 

  6. Jang S, Shin WS (2008) Thermal analysis of LED arrays for automotive head lamp with a novel cooling system. IEEE Trans Dev Mater Reliab 8(3):561–564

    Article  Google Scholar 

  7. Wulf J Calculation of temperature loads in headlamps. SAE international congress and exposition Detroit. doi:10.4271/980315

  8. Kuehn TH, Goldstein RJ (1980) Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder. Int J Heat Mass Transf 23(7):971–979

    Article  MATH  Google Scholar 

  9. Clemes SB, Hollands KGT, Brunger AP (1994) Natural convection heat transfer from long horizontal isothermal cylinders. ASME J Heat Transf 116(1):96–105

    Article  Google Scholar 

  10. Roychowdhury DG, Das SK, Sundararajan T (2002) Numerical simulation of natural convective heat transfer and fluid flow around a heated cylinder inside an enclosure. Heat Mass Transf 38(7–8):565–576

    Article  Google Scholar 

  11. Ambrosini D, Paoletti D, Spagnolo GS (2003) Study of free-convective onset on a horizontal wire using specle pattern interferometry. Int J Heat Mass Transf 46(22):4145–4155

    Article  Google Scholar 

  12. Yamamoto S, Niiyama D, Shin BR (2004) A Numerical method for natural convection and heat conduction around and in a horizontal circular pipe. Int J Heat Mass Transf 47(26):5781–5792

    Article  MATH  Google Scholar 

  13. Corcione M (2005) Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array. Int J Heat Mass Transf 48(17):3660–3673

    Article  MATH  Google Scholar 

  14. MdM Molla, MdA Hossain, Paul MC (2006) Natural convection flow from an isothermal horizontal circular cylinder in presence of heat generation. Int J Eng Sci 44(13–14):949–958

    Google Scholar 

  15. Zeitoun O, Ali M (2006) Numerical investigation of natural convection around isothermal horizontal rectangular ducts. Num Heat Transf Part A 50(2):189–204

    Article  Google Scholar 

  16. Atayilmaz SO, Teke I (2009) Experimental and numerical study of the natural convection from a heated horizontal cylinder. Int Commun Heat Mass Transf 36(7):731–738

    Article  Google Scholar 

  17. Cheng CY (2009) Natural convection heat transfer from a horizontal isothermal elliptical cylinder with internal heat generation. Int Commun Heat Mass Transf 36(4):346–350

    Article  Google Scholar 

  18. Bararnia H, Soleimani S, Ganji DD (2011) Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. Int Commun Heat Mass Transf 38(10):1436–1442

    Article  Google Scholar 

  19. Incropera FP, DeWitt DP (2001) Fundamentals of heat and mass transfer. Istanbul, (In Turkish)

  20. Kreith F, Bohn MS (2001) Principles of heat transfer, 6th edn. Brooks/Cole, California, pp 317–318

    Google Scholar 

  21. Cengel YA (2011) Heat and mass transfer. Guven Bilimsel Kitabevi, Izmir. (In Turkish)

  22. Quereshi ZH, Ahmad R (1987) Natural convection from a uniform heat flux horizontal cylinder at moderate Rayleigh numbers. Numer Heat Transf 11(2):199–212

    Article  Google Scholar 

  23. MdM Molla, Paul SC, Hossain MdA (2009) Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation. Appl Math Model 33(7):3226–3236

    Article  MathSciNet  Google Scholar 

  24. Demir H (2010) Experimental and numerical studies of natural convection from horizontal concrete cylinder heated with a cylindrical heat source. Int Commun Heat Mass Transf 37(4):422–429

    Article  Google Scholar 

  25. Cheng CY (2010) Natural convection boundary layer flow of fluid with temperature-dependent viscosity from a horizontal elliptical cylinder with constant surface heat flux. Appl Math Comput 217(1):83–91

    Article  MATH  MathSciNet  Google Scholar 

  26. Newport DT, Dalton TM, Davies MRD, Whelan M, Forno C (2001) On the thermal interaction between an isothermal cylinder and its isothermal enclosure for cylinder Rayleigh number of order 10 4. ASME J Heat Transf 123(6):1052–1061

    Article  Google Scholar 

  27. Sokmen KF, Pulat E, Yamankaradeniz N, Coskun S (2012) Thermal analysis of automobile head lamps. Sixth automotive technologies congress OTEKON 2012, Uludag University, Bursa, p 230

  28. Shih TIP (2001) Application of CFD in the automotive industry: Where do we want to be and how to get there? Final Report for NSF Grant CTS-0001794 East Lansing, MI

  29. Kobayashi T, Tsubokura M (2009) CFD application in automotive industry. In: Hirschel EH et al (eds) Of notes on numerical fluid mechanics NNFM 100, vol 100. Springer, Heidelberg, pp 285–295

    Google Scholar 

  30. ANSYS CFX 2012 version 12.1, user manual, www.ansys.com/products/icemcfd.asp

  31. Henson JC, Malalasekera WMG (1997) Comparison of the discrete transfer and monte carlo methods for radiative heat transfer in three-dimensional, nonhomogeneous, scattering media. Numer Heat Transf Part A Appl 31(1):19–36

    Article  Google Scholar 

  32. Fischer P (2005) Radiative heat redistribution and natural convection flow inside an automotive fog lamp. Sixth international symposium on automotive lighting ISAL 2005 Darmstadt University of Technology, Darmstadt, p 460

  33. Ji Y, Cook MJ, Hanby VI, Infield DG, Loveday DL, Mei L (2007) CFD modelling of double-skin façades with venetian blinds. In: Proceedings of the IBPSA building simulation, pp 1491–1498

  34. http://203.158.253.140/media/eBook/Engineer/Heat%20And%20Mass%20Transfer/Handbook%20of%20Heat%20Transfer/35558_04.pdf (Accessed in 13 August 2012)

  35. Ashjaee M, Eshtiaghi AH, Yaghoubi M, Yousefi T (2007) Experimental investigation on free convection from a horizontal cylinder beneath an adiabatic ceiling. Exp Thermal Fluid Sci 32(2):614–623

    Article  Google Scholar 

  36. Wang P, Kahawita R, Nguyen TH (1990) Numerical computation of the natural convection flow about a horizontal cylinder using splines. Numer Heat Transf Part A Appl 17(2):191–215

    Article  MATH  Google Scholar 

  37. Saitoh T, Sajik T, Maruhara K (1993) Benchmark solutions to natural convection heat transfer roblem around a horizontal circular cylinder. Int J Heat Mass Transf 36(5):1251–1259

    Article  MATH  Google Scholar 

  38. Abu-Hijleh BAK (2003) Natural convection heat transfer from a cylinder with high conductivity permeable fins. ASME J Heat Transf 125(2):282–288

    Article  Google Scholar 

  39. Razavi SE, Barar F, Farhangmer V (2008) Characteristics-Based finite-volume soluton for natural convection around a horizontal cylinder. J Appl Sci 8(10):1905–1911

    Article  Google Scholar 

  40. Reymond O, Murray DB, O’Donovan TS (2008) Natural convection heat transfer from two horizontal cylinders. Exp Thermal Fluid Sci 32(8):1702–1709

    Article  Google Scholar 

  41. Grafsronningen S, Jensen A, Reif BAP (2011) PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder. Int J Heat Mass Transf 54(23–24):4975–4987

    Article  Google Scholar 

  42. Atmane MA, Chan VSS, Murray DB (2003) Natural convection around a horizontal heated cylinder: the effects of vertical confinement. Int J Heat Mass Transf 46(19):3661–3672

    Article  Google Scholar 

  43. Çengel YA, Ngai TH (1991) Cooling of vertical shrouded-fin arrays of rectangular profile by natural convection: an experimental study. Heat Transf Eng 12(4):27–39

    Article  Google Scholar 

  44. Oosthuizen PH, Paul JT (2010) Natural convective heat transfer from a narrow vertical plate with a uniform surface heat flux and with different plate edge conditions. Front Heat Mass Transf 1(1):1–8

    Article  Google Scholar 

  45. Conceiçao EZE, da Silva MCG, Andre JCS, Viegas DX (2000) Thermal behaviour simulation of the passenger compartmentof vehicles. Int J Veh Des 24(4):372–387

    Article  Google Scholar 

  46. Nakanishi T, Shimohashi K (2002) Development of dimensionless correlation for natural convection cooling board. IEEE the eight intersociety conference on thermal and thermomechanical phenomena in electronic systems ITHERM2002 San Diego California pp 150–156

Download references

Acknowledgments

This study was supported by the Turkish Ministry of Science, Industry and Technology under the grant of SAN-TEZ project numbered as 00521STZ.2010-1. The authors gratefully acknowledge the Ministry for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Pulat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokmen, K.F., Pulat, E., Yamankaradeniz, N. et al. Thermal computations of temperature distribution and bulb heat transfer in an automobile headlamp. Heat Mass Transfer 50, 199–210 (2014). https://doi.org/10.1007/s00231-013-1229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1229-5

Keywords

Navigation