Skip to main content
Log in

The effects of drug-drug interaction on linezolid pharmacokinetics: A systematic review

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

Linezolid is a commonly used antibiotic in the clinical treatment of gram-positive bacterial infections. The impacts of drug interactions on the pharmacokinetics of linezolid are often overlooked. This manuscript aims to review the medications that affect the pharmacokinetics of linezolid.

Methods

In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we queried the PubMed, Embase, and Cochrane Library for publications from database establishment to November 3, 2023, using the search terms: “Linezolid” and “interaction,” or “interact,” or “drug-drug interaction,” or “co-treatment,” or “cotreatment,” or “combined,” or “combination.”

Results

A total of 24 articles were included. Among the reported medication interactions, rifampicin, levothyroxine, venlafaxine, and phenobarbital could reduce the concentration of linezolid; clarithromycin, digoxin, cyclosporine, proton pump inhibitors, and amiodarone could increase the concentration of linezolid, while aztreonam, phenylpropanolamine, dextromethorphan, antioxidant vitamins, and magnesium-containing antacids had no significant effects on linezolid pharmacokinetics. The ratio of mean (ROM) of linezolid AUC in co-treatment with rifampicin to monotherapy was 0.67 (95%CI 0.58–0.77) and 0.63 (95%CI 0.43–0.91), respectively, in 2 studies, and co-treatment with 500 mg clarithromycin to monotherapy was 1.81 (95%CI 1.49–2.13).

Conclusions

This systematic review found that numerous drugs have an impact on the pharmacokinetics of linezolid, and the purported main mechanism may be that linezolid is the substrate of P-glycoprotein. In clinical practice, it is prudent to pay attention to the changes in linezolid pharmacokinetics caused by interactions. Conducting therapeutic drug monitoring (TDM) is beneficial to improve efficacy and reduce adverse reactions of linezolid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All the data used for this publication is presented in the main article.

References

  1. Stevens DL, Dotter B, Madaras-Kelly K (2004) A review of linezolid: the first oxazolidinone antibiotic. Expert Rev Anti Infect Ther 2(1):51–59

    Article  CAS  PubMed  Google Scholar 

  2. Linezolid injection drug label information. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=d05541c6-fd63-cc99-e053-2995a90a4ec7#. Accessed 10 May 2023

  3. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  5. National Heart, Lung and Blood Institute. Quality assessment tool for case series studies. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed on 19 Aug 2023

  6. Jonathan Sterne JH, Reeves B, Savovi´c J, Turner L. RoB 2 for crossover trials. https://www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-crossover-trials. Accessed on 21 Aug 2023

  7. Sisson TL, Jungbluth GL, Hopkins NK (1999) A pharmacokinetic evaluation of concomitant administration of linezolid and aztreonam. J Clin Pharmacol 39(12):1277–1282

    Article  CAS  PubMed  Google Scholar 

  8. Hendershot PE, Antal EJ, Welshman IR, Batts DH, Hopkins NK (2001) Linezolid: pharmacokinetic and pharmacodynamic evaluation of coadministration with pseudoephedrine HCl, phenylpropanolamine HCl, and dextromethorpan HBr. J Clin Pharmacol 41(5):563–572

    Article  CAS  PubMed  Google Scholar 

  9. Grunder G, Zysset-Aschmann Y, Vollenweider F, Maier T, Krähenbühl S, Drewe J (2006) Lack of pharmacokinetic interaction between linezolid and antacid in healthy volunteers. Antimicrob Agents Chemother 50(1):68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoyo I, Martínez-Pastor J, Garcia-Ramiro S, Climent C, Brunet M, Cuesta M, Mensa J, Soriano A (2012) Decreased serum linezolid concentrations in two patients receiving linezolid and rifampicin due to bone infections. Scand J Infect Dis 44(7):548–550

    Article  CAS  PubMed  Google Scholar 

  11. Cojutti P, Maximova N, Crichiutti G, Isola M, Pea F (2015) Pharmacokinetic/pharmacodynamic evaluation of linezolid in hospitalized paediatric patients: a step toward dose optimization by means of therapeutic drug monitoring and Monte Carlo simulation. J Antimicrob Chemother 70(1):198–206

    Article  CAS  PubMed  Google Scholar 

  12. Blassmann U, Roehr AC, Frey OR, Koeberer A, Briegel J, Huge V, Vetter-Kerkhoff C (2016) Decreased linezolid serum concentrations in three critically ill patients: clinical case studies of a potential drug interaction between linezolid and rifampicin. Pharmacology 98(1–2):51–55

    Article  CAS  PubMed  Google Scholar 

  13. Pai MP, Cojutti PG, Gerussi V, Della Siega P, Tascini C, Pea F (2022) Linezolid population pharmacokinetics to improve dosing in cardiosurgical patients: factoring a new drug-drug interaction pathway. Clin Infect Dis 25:ciac917

    Google Scholar 

  14. Abdelgawad N, Wasserman S, Abdelwahab MT, Davis A, Stek C, Wiesner L, Black J, Meintjes G, Wilkinson RJ, Denti P (2023) Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis. J Infect Dis 22:jiad413

    Article  Google Scholar 

  15. Bock M, Van Hasselt JGC, Schwartz F, Wang H, Høiby N, Fuursted K, Ihlemann N, Gill S, Christiansen U, Bruun NE, Elming H, Povlsen JA, Køber L, Høfsten DE, Fosbøl EL, Pries-Heje MM, Christensen JJ, Rosenvinge FS, Torp-Pedersen C, Helweg-Larsen J, Tønder N, Iversen K, Bundgaard H, Moser C (2023) Rifampicin reduces plasma concentration of linezolid in patients with infective endocarditis. J Antimicrob Chemother 12:dkad316

    Google Scholar 

  16. Gordi T, Tan LH, Hong C et al (2003) The pharmacokinetics of linezolid are not affected by concomitant intake of the antioxidant vitamins C and E. J Clin Pharmacol 43(10):1161–1167

    Article  CAS  PubMed  Google Scholar 

  17. Gandelman K, Zhu T, Fahmi OA, Glue P, Lian K (2011) Obach RS. Damle B -J Clin Pharmacol 51(2):229–236

    Article  CAS  PubMed  Google Scholar 

  18. Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M (2012) Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother 67(8):2034–2042

    Article  CAS  PubMed  Google Scholar 

  19. Bolhuis MS, van Altena R, van Soolingen D et al (2013) Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients. Eur Respir J 42(6):1614–1621

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto S, Honda K, Fujita K, Miyachi Y, Isoda K, Misaka K, Suga Y, Kato S, Tsuchiya H, Kato Y, Okajima M, Taniguchi T, Shimada T, Sai Y (2018) Effect of coadministration of rifampicin on the pharmacokinetics of linezolid: clinical and animal studies. J Pharm Health Care Sci 12(4):27

    Article  Google Scholar 

  21. Puplà Bartoll A, Bellés Medall MD, Pérez Catalán IE, Roig Martí C, Bodega Azuara J, Gil Candel M, Esteve López V, Ferrando PR (2023) Ajuste posológico de linezolid por interacción con rifampicina en endocarditis infecciosa [Dose adjustment of linezolid due to interaction with rifampicin in infective endocarditis]. Rev Esp Quimioter 36(4):436–438

    Article  PubMed  Google Scholar 

  22. Egle H, Trittler R, Kümmerer K, Lemmen SW (2005) Linezolid and rifampin: drug interaction contrary to expectations? Clin Pharmacol Ther 77(5):451–453

    Article  CAS  PubMed  Google Scholar 

  23. Gebhart BC, Barker BC, Markewitz BA (2007) Decreased serum linezolid levels in a critically ill patient receiving concomitant linezolid and rifampin. Pharmacotherapy 27(3):476–479

    Article  CAS  PubMed  Google Scholar 

  24. Pea F, Furlanut M, Cojutti P et al (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bolhuis MS, van Altena R, Uges DR, van der Werf TS, Kosterink JG, Alffenaar JW (2010) Clarithromycin significantly increases linezolid serum concentrations. Antimicrob Agents Chemother 54(12):5418–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pea F, Cadeo B, Cojutti PG, Pecori D, Bassetti M (2014) Linezolid underexposure in a hypothyroid patient on levothyroxine replacement therapy: a case report. Ther Drug Monit 36(5):687–689

    Article  PubMed  Google Scholar 

  27. Cojutti P, Crapis M, Bassetti M, Hope W, Pea F (2015) Linezolid underexposure in a patient co-treated with venlafaxine. Eur J Clin Pharmacol 71(10):1285–1286

    Article  PubMed  Google Scholar 

  28. Ashizawa N, Tsuji Y, Kawago K, Higashi Y, Tashiro M, Nogami M, Gejo R, Narukawa M, Kimura T, Yamamoto Y (2016) Successful treatment of methicillin-resistant Staphylococcus aureus osteomyelitis with combination therapy using linezolid and rifampicin under therapeutic drug monitoring. J Infect Chemother 22(5):331–334

    Article  CAS  PubMed  Google Scholar 

  29. Töpper C, Steinbach CL, Dorn C, Kratzer A, Wicha SG, Schleibinger M, Liebchen U, Kees F, Salzberger B, Kees MG (2016) Variable linezolid exposure in intensive care unit patients-possible role of drug-drug interactions. Ther Drug Monit 38(5):573–578

    Article  PubMed  Google Scholar 

  30. Yulin Z, Lingti K, Shan G, Yong Z (2020) A possible interaction between linezolid and digoxin: a case report of therapeutic drug monitoring. Saudi Pharm J 28(11):1408–1410

    Article  PubMed  PubMed Central  Google Scholar 

  31. Friedrich JO, Adhikari NK, Beyene J (2011) Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J Clin Epidemiol 64(5):556–564

    Article  PubMed  Google Scholar 

  32. Estimating the sample mean and standard deviation (SD) from the five-number summary and its application in meta-analysis. https://www.math.hkbu.edu.hk/~tongt/papers/median2mean.html. Accessed 23 Aug 2023

  33. Allegra S, Di Paolo A, Cusato J, Fatiguso G, Arrigoni E, Danesi R, Corcione S, DʼAvolio A (2019) Different underlying mechanism might explain the absence of a significant difference in area under the concentration-time curve of linezolid for different ABCB1 genotypes. Ther Drug Monit 41(2):254–255

    Article  PubMed  Google Scholar 

  34. Siegmund W, Altmannsberger S, Paneitz A, Hecker U, Zschiesche M, Franke G, Meng W, Warzok R, Schroeder E, Sperker B, Terhaag B, Cascorbi I, Kroemer HK (2002) Effect of levothyroxine administration on intestinal P-glycoprotein expression: consequences for drug disposition. Clin Pharmacol Ther 72(3):256–264

    Article  CAS  PubMed  Google Scholar 

  35. Levin GM, Nelson LA, DeVane CL, Preston SL, Eisele G, Carson SW (2001) A pharmacokinetic drug-drug interaction study of venlafaxine and indinavir. Psychopharmacol Bull 35(2):62–71

    CAS  PubMed  Google Scholar 

  36. Eberl S, Renner B, Neubert A, Reisig M, Bachmakov I, König J, Dörje F, Mürdter TE, Ackermann A, Dormann H, Gassmann KG, Hahn EG, Zierhut S, Brune K, Fromm MF (2007) Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet 46(12):1039–1049

    Article  CAS  PubMed  Google Scholar 

  37. Fenner KS, Troutman MD, Kempshall S et al (2009) Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther 85(2):173–181

    Article  CAS  PubMed  Google Scholar 

  38. Katoh M, Nakajima M, Yamazaki H, Yokoi T (2001) Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci 12(4):505–513

    Article  CAS  PubMed  Google Scholar 

  39. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF (2001) Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol 364(6):551–557

    Article  CAS  PubMed  Google Scholar 

  40. Kono Y, Kawahara I, Shinozaki K, Nomura I, Marutani H, Yamamoto A, Fujita T (2021) Characterization of P-glycoprotein inhibitors for evaluating the effect of P-glycoprotein on the intestinal absorption of drugs. Pharmaceutics 13(3):388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    Article  CAS  PubMed  Google Scholar 

  42. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40(Suppl):S3–S8

    Article  CAS  PubMed  Google Scholar 

  43. Gottesman MM, Pastan I, Ambudkar SV (1996) P-glycoprotein and multidrug resistance. Curr Opin Genet Dev 6:610–617

    Article  CAS  PubMed  Google Scholar 

  44. Taubert M, Zander J, Frechen S, Scharf C, Frey L, Vogeser M, Fuhr U, Zoller M (2017) Optimization of linezolid therapy in the critically ill: the effect of adjusted infusion regimens. J Antimicrob Chemother 72(8):2304–2310

    Article  CAS  PubMed  Google Scholar 

  45. Collett A, Tanianis-Hughes J, Warhurst G (2004) Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions? Biochem Pharmacol 68:783–790

    Article  CAS  PubMed  Google Scholar 

  46. Cheli S, Fusi M, De Silvestri A, Bonini I, Clementi E, Cattaneo D, Montrasio C, Baldelli S (2021) In linezolid underexposure, pharmacogenetics matters: the role of CYP3A5. Biomed Pharmacother 139:111631

    Article  CAS  PubMed  Google Scholar 

  47. Obach RS (2022) Linezolid metabolism is catalyzed by cytochrome P450 2J2, 4F2, and 1B1. Drug Metab Dispos 50(4):413–421

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Qiang Xu and Lu Li designed the study. Qiang Xu, Yanlei Sang, and Anna Gao investigated the reviews and data. Qiang Xu wrote the original draft; Lu Li reviewed and edited the manuscript. All authors agreed to submit the final version to the journal and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Lu Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This systematic review was registered in PROSPERO (CRD42023453429) on 21/08/2023.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Sang, Y., Gao, A. et al. The effects of drug-drug interaction on linezolid pharmacokinetics: A systematic review. Eur J Clin Pharmacol (2024). https://doi.org/10.1007/s00228-024-03652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00228-024-03652-2

Keywords

Navigation