Skip to main content

Advertisement

Log in

Probability of mycobactericidal activity of para-aminosalicylic acid with novel dosing regimens

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Para-aminosalicylic acid (PAS) is currently one of the add-on group C medicines recommended by the World Health Organization for multidrug-resistant tuberculosis treatment. At the recommended doses (8–12 g per day in two to three divided doses) of the widely available slow-release PAS formulation, studies suggest PAS exposures are lower than those reached with older PAS salt formulations and do not generate bactericidal activity. Understanding the PASER dose-exposure–response relationship is crucial for dose optimization. The objective of our study was to establish a representative population pharmacokinetics model for PASER and evaluate the probability of bactericidal and bacteriostatic target attainment with different dosing regimens.

Methods

To this end, we validated and optimized a previously published population pharmacokinetic model on an extended dataset. The probability of target attainment was evaluated for once-daily doses of 12 g, 14 g, 16 g and 20 g PASER.

Results

The final optimized model included the addition of variability in bioavailability and allometric scaling with body weight on disposition parameters. Peak PAS concentrations over minimum inhibitory concentration of 100, which is required for bactericidal activity are achieved in 53%, 65%, 72% and 84% of patients administered 12, 14, 16 and 20 g once-daily PASER, respectively, when MIC is 1 mg/L. For the typical individual, the exposure remained above 1 mg/L for ≥ 98% of the dosing interval in all the evaluated PASER regimens.

Conclusion

The pharmacokinetic/pharmacodynamic parameters linked to bactericidal activity should be determined for 14 g, 16 g and 20 g once-daily doses of PASER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment. Geneva: World Health Organization; 2019

  2. Treatment of pulmonary tuberculosis with streptomycin and para-aminosalicylic acid; a Medical Research Council investigation. Br Med J. 1950;2(4688):1073–85

  3. The prevention of streptomycin resistance by combined chemotherapy; a Medical Research Council investigation. Br Med J. 1952;1:1157–62

  4. Isoniazid in combination with streptomycin or with P.A.S. in the treatment of pulmonary tuberculosis; fifth report to the Medical Research Council by their Tuberculosis Chemotherapy Trials Committee. Br Med J. 1953;2(4844):1005–14

  5. Various combinations of isoniazid with streptomycin or with P.A.S. in the treatment of pulmonary tuberculosis; seventh report to the Medical Research Council by their Tuberculosis Chemotherapy Trials Committee. Br Med J. 1955;1(4911):435–45

  6. Yue WY, Cohen SS (1966) Toleration and absorption of sodium para-aminosalicylate and para-aminosalicylic acid (neopasalate). Comparison with other forms of para-aminosalicylic acid. Dis Chest 49(2):165–174

    Article  CAS  PubMed  Google Scholar 

  7. de Kock L, Sy SKB, Rosenkranz B, Diacon AH, Prescott K, Hernandez KR, Yu M, Derendorf H, Donald PR (2014) Pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV-coinfected tuberculosis patients receiving antiretroviral therapy, managed for multidrug-resistant and extensively drug-resistant tuberculosis. Antimicrob Agents Chemother 58(10):6242–6250

    Article  PubMed  PubMed Central  Google Scholar 

  8. Citron KM, Kuper SW (1959) Para-aminosalicylic-acid (PAS) concentrations in the serum during treatment with various PAS preparations. Tubercle. 40:443–452

    Article  CAS  PubMed  Google Scholar 

  9. Donald PR, Diacon AH (2015) Para-aminosalicylic acid: the return of an old friend. Lancet Infect Dis 15(9):1091–1099

    Article  CAS  PubMed  Google Scholar 

  10. Abulfathi AA, Donald PR, Adams K, Svensson EM, Diacon AH, Reuter H (May 2020) The pharmacokinetics of para-aminosalicylic acid and its relationship to efficacy and intolerance. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14395

  11. Jindani A, Aber VR, Edwards EA, Mitchison DA (1980) The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 121(6):939–949

    CAS  PubMed  Google Scholar 

  12. Charles F (1955) The treatment of pulmonary tuberculosis with intravenous PAS-infusions. Tubercle. 36(2):40–44

    Article  CAS  PubMed  Google Scholar 

  13. Reisner D (1966) Comparison of single and divided daily dosages of isoniazid and PAS in the treatment of pulmonary tuberculosis. XV. A report of the Veterans Administration-Armed Forces Cooperative. Study on the chemotherapy of tuberculosis. Am Rev Respir Dis 94(6):849–857

    CAS  PubMed  Google Scholar 

  14. Paser (Jacobus Pharmaceutical Company, Inc.). https://medlibrary.org/lib/rx/meds/paser/. 2010

  15. WHO treatment guidelines for drug- resistant tuberculosis October 2016 Revision

  16. Peloquin CA, Henshaw TL, Huitt GA, Berning SE, Nitta AT, James GT (1994) Pharmacokinetic evaluation of para-aminosalicylic acid granules. Pharmacother J Hum Pharmacol Drug Ther 14(1):40–46

    Article  CAS  Google Scholar 

  17. Sy SKB, de Kock L, Diacon AH, Werely CJ, Xia H, Rosenkranz B, van der Merwe L, Donald PR (2015) N-acetyltransferase genotypes and the pharmacokinetics and tolerability of para-aminosalicylic acid in patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother 59(7):4129–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liwa AC, Schaaf HS, Rosenkranz B, Seifart HI, Diacon AH, Donald PR (2013) Para-aminosalicylic acid plasma concentrations in children in comparison with adults after receiving a granular slow-release preparation. J Trop Pediatr 59(2):90–94

    Article  CAS  PubMed  Google Scholar 

  19. Wan SH, Pentikainen PJ, Azarnoff DL (1974) Bioavailability of aminosalicylic acid and its various salts in humans III: absorption from tablets. J Pharm Sci 63(5):708–711

    Article  CAS  PubMed  Google Scholar 

  20. Peloquin CA, Zhu M, Adam RD, Singleton MD, Nix DE (2001) Pharmacokinetics of para -aminosalicylic acid granules under four dosing conditions. Ann Pharmacother 35(11):1332–1338

    Article  CAS  PubMed  Google Scholar 

  21. PsN: https://uupharmacometrics.github.io/PsN/

  22. Heifets LB (1991) Antituberculosis drugs: antimicrobial activity in vitro, p 13–58. In Heifets LB (Ed), Drug Susceptibility in the Chemotherapy of Mycobacterial Infections

  23. Kibleur Y, Brochart H, Schaaf HS, Diacon AH, Donald PR (2014) Dose regimen of para-aminosalicylic acid gastro-resistant formulation (PAS-GR) in multidrug-resistant tuberculosis. Clin Drug Investig 34(4):269–276

    Article  CAS  PubMed  Google Scholar 

  24. Bartmann K (Karl). Antituberculosis drugs. Springer Berlin Heidelberg; 1988

  25. Mayer RL, Eisman PC, Gisi TA, Konopka EA (1958) The chemotherapeutic activity upon chromogenic mycobacteria of certain derivatives of thiocarbanilide (Su 1906), thiazoline (Su 3068), and thiazolidinone (Su 3912). Am Rev Tuberc 77(4):694–702

    CAS  PubMed  Google Scholar 

  26. Furesz S (1970) Chemical and biological properties of rifampicin. Antibiot Chemother Fortschritte Adv Prog 16:316–351

    Article  CAS  Google Scholar 

  27. Walter A (1950) Die tuberkulostatische Wirksamkeit verschiedener PAS-Präparate in vitro. DMW - Dtsch Medizinische Wochenschrift. 75(17):587–587

    Article  CAS  Google Scholar 

  28. Heilmeyer L (1950) Weitere Erfahrungen mit Streptomycin, PAS und TBI (Conteben) in der Behandlung der internen Tuberkulosen. DMW - Dtsch Medizinische Wochenschrift 75(15):473–477

    Article  CAS  Google Scholar 

  29. Ngaimisi E, Minzi O, Mugusi S, Sasi P, Riedel KD, Suda A, Ueda N, Bakari M, Janabi M, Mugusi F, Bertilsson L, Burhenne J, Aklillu E, Diczfalusy U (2014) Pharmacokinetic and pharmacogenomic modelling of the CYP3A activity marker 4 -hydroxycholesterol during efavirenz treatment and efavirenz/rifampicin co-treatment. J Antimicrob Chemother 69(12):3311–3319

    Article  CAS  PubMed  Google Scholar 

  30. Svensson EM, Aweeka F, Park J-G, Marzan F, Dooley KE, Karlsson MO (2013) Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother 57(6):2780–2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee LSU, Pham P, Flexner C (2012) Unexpected drug-drug interactions in human immunodeficiency virus (HIV) therapy: induction of UGT1A1 and bile efflux transporters by Efavirenz. Ann Acad Med Singap 41(12):559–562

    PubMed  Google Scholar 

  32. Jones JS (1954) Intravenous P.A.S. in relation to pulmonary tuberculotherapy, with an account of 1,145 transfusions. Br J Tuberc Dis Chest 48(4):286–297

    Article  CAS  PubMed  Google Scholar 

  33. Hollander AG (1955) Para-aminosalicylic acid-resin complex: studies in absorption, serum electrolytes, and tolerance. Am Rev Tuberc. 72(4):548–551

    CAS  PubMed  Google Scholar 

  34. Riska N, Tennberg C (1962) Optimal PAS dosage. Am Rev Respir Dis 86:430–433

    CAS  PubMed  Google Scholar 

  35. Riska N (1959) PAS therapy with a daily unfractionated dose. Acta Tuberc Scand 37:104–111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mats Karlsson and Lénaïg Tanneau for the initial analyses plan and to Bernd Rosenkranz and Sherwin Sy for providing the datasets.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. AAA and EMS are supported by PanACEA, which is part of the European and Developing Countries Clinical Trials Partnership (EDCTP) 2 programme supported by the European Union (grant number TRIA2015–1102-PanACEA).

Author information

Authors and Affiliations

Authors

Contributions

AAA contributed in developing the research questions, data formatting, designing and execution of the modelling and simulation study, interpreting the results and drafting the manuscript. PA contributed in data formatting, designing of the modelling study and critical review of the manuscript. PRD, AHD and HR contributed in the conceptual design of the study, interpreting the results and critical review of the manuscript. EMS contributed in developing the research questions, designing and supervision of the modelling and simulation study, interpreting the results and critical review of the manuscript.

Corresponding author

Correspondence to Ahmed A. Abulfathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics declaration

Stellenbosch University’s Health Research Ethics Committee (S19/01/007) approved this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abulfathi, A.A., Assawasuwannakit, P., Donald, P.R. et al. Probability of mycobactericidal activity of para-aminosalicylic acid with novel dosing regimens. Eur J Clin Pharmacol 76, 1557–1565 (2020). https://doi.org/10.1007/s00228-020-02943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-02943-8

Keywords

Navigation