Skip to main content

Advertisement

Log in

Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and the Risk of Fracture: A Systematic Review and Meta-analysis of Randomized Controlled Trials

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis and hyperlipidemia are closely correlated and statins might be associated with a decreased risk of fracture. We aimed to investigate the association between proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) therapy and the risk of fracture. The PubMed, Cochrane library, and EMBASE databases were systematically searched from the inception dates to October 22, 2022. Randomized clinical trials (RCTs) that addressed to fracture events of participants using alirocumab, evolocumab, bococizumab or inclisiran, with a follow-up of ≥ 24 weeks were included. Meta-analyses were conducted to calculate the odds ratio (OR) with 95% confidence intervals (CIs) for major osteoporotic fracture, hip fracture, osteoporotic non-vertebral fracture, and total fracture. 30 trials assessing PCSK9i among 95, 911 adults were included. There were no significant associations between PCSK9i therapy and the risk of major osteoporotic fracture [OR 1.08 (95% Cl 0.87–1.34), p = 0.49], hip fracture [OR 1.05 (95% Cl 0.73–1.53), p = 0.79], osteoporotic non-vertebral fracture [OR 1.03 (95% Cl 0.80–1.32), p = 0.83], and total fracture [OR 1.03 (95% Cl 0.88–1.19), p = 0.74] over a period of 6–64 months. No significant associations were detected in any of the sensitivity analyses and subgroup analyses stratified by the type of PCSK9i, follow-up duration, age, sex, sample size, and patient profile. Pooled results of our meta-analysis showed that exposure to PCSK9i was not associated with reduced risks of fracture in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data relevant to the study are included in the article or uploaded as supplementary information. This paper is a systematic review and does not report novel primary data.

References

  1. Consensus development conference (1993) diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650. https://doi.org/10.1016/0002-9343(93)90218-e

    Article  Google Scholar 

  2. Blake J et al. (2021) Management of osteoporosis in postmenopausal women: the 2021 position statement of the North American menopause society’’ editorial panel. Management of osteoporosis in postmenopausal women: the 2021 position statement of the North American menopause society. Menopause 28(9):973–997

  3. Pelton K, Krieder J, Joiner D, Freeman MR, Goldstein SA, Solomon KR (2012) Hypercholesterolemia promotes an osteoporotic phenotype. Am J Pathol 181(3):928–936. https://doi.org/10.1016/j.ajpath.2012.05.034

    Article  PubMed  PubMed Central  Google Scholar 

  4. Orozco P (2004) Atherogenic lipid profile and elevated lipoprotein (a) are associated with lower bone mineral density in early postmenopausal overweight women. Eur J Epidemiol 19(12):1105–1112. https://doi.org/10.1007/s10654-004-1706-8

    Article  CAS  PubMed  Google Scholar 

  5. Kim J, Ha J, Jeong C, Lee J, Lim Y, Jo K, Kim MK, Kwon HS, Song KH, Baek KH (2022) Bone mineral density and lipid profiles in older adults: a nationwide cross-sectional study. Osteoporos Int. https://doi.org/10.1007/s00198-022-06571-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xiao F, Peng P, Gao S, Lin T, Fang W, He W (2022) Inverse association between low-density lipoprotein cholesterol and bone mineral density in young- and middle-aged people: the NHANES 2011–2018. Front Med (Lausanne) 9:929709. https://doi.org/10.3389/fmed.2022.929709

    Article  PubMed  Google Scholar 

  7. Tian L, Yu X (2015) Lipid metabolism disorders and bone dysfunction–interrelated and mutually regulated (review). Mol Med Rep 12(1):783–794. https://doi.org/10.3892/mmr.2015.3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim SY, Yoo DM, Min C, Kim JH, Kwon MJ, Kim JH, Choi HG (2021) Association between osteoporosis and previous statin use: a nested case-control study. Int J Environ Res Public Health 18(22):11902. https://doi.org/10.3390/ijerph182211902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leutner M, Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, Klimek P, Kautzky-Willer A (2019) Diagnosis of osteoporosis in statin-treated patients is dose-dependent. Ann Rheum Dis 78(12):1706–1711. https://doi.org/10.1136/annrheumdis-2019-215714

    Article  CAS  PubMed  Google Scholar 

  10. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272. https://doi.org/10.1056/NEJMoa054013

    Article  CAS  PubMed  Google Scholar 

  11. Gallego-Colon E, Daum A, Yosefy C (2020) Statins and PCSK9 inhibitors: a new lipid-lowering therapy. Eur J Pharmacol 878:173114. https://doi.org/10.1016/j.ejphar.2020.173114

    Article  CAS  PubMed  Google Scholar 

  12. Sabatine MS (2019) PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol 16(3):155–165. https://doi.org/10.1038/s41569-018-0107-8

    Article  CAS  PubMed  Google Scholar 

  13. Stoekenbroek RM, Kastelein JJP (2018) Proprotein convertase subtilisin/kexin type 9: from genetics to clinical trials. Curr Opin Cardiol 33(3):269–275. https://doi.org/10.1097/HCO.0000000000000517

    Article  PubMed  Google Scholar 

  14. Ridker PM, Tardif JC, Amarenco P et al (2017) Lipid-Reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med 376(16):1517–1526. https://doi.org/10.1056/NEJMoa1614062

    Article  CAS  PubMed  Google Scholar 

  15. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  16. Esposito K, Capuano A, Sportiello L, Giustina A, Giugliano D (2013) Should we abandon statins in the prevention of bone fractures? Endocrine 44(2):326–333. https://doi.org/10.1007/s12020-013-9924-z

    Article  CAS  PubMed  Google Scholar 

  17. Tintut Y, Demer LL (2014) Effects of bioactive lipids and lipoproteins on bone. Trends Endocrinol Metab 25(2):53–59. https://doi.org/10.1016/j.tem.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Papapanagiotou A, Siasos G, Kassi E, Gargalionis AN, Papavassiliou AG (2015) Novel inflammatory markers in hyperlipidemia: clinical implications. Curr Med Chem 22(23):2727–2743. https://doi.org/10.2174/0929867322666150520095008

    Article  CAS  PubMed  Google Scholar 

  19. Catapano AL, Pirillo A, Norata GD (2020) New pharmacological approaches to target PCSK9. Curr Atheroscler Rep 22(7):24. https://doi.org/10.1007/s11883-020-00847-7

    Article  CAS  PubMed  Google Scholar 

  20. Ruscica M, Tokgözoğlu L, Corsini A, Sirtori CR (2019) PCSK9 inhibition and inflammation: a narrative review. Atherosclerosis 288:146–155. https://doi.org/10.1016/j.atherosclerosis.2019.07.015

    Article  CAS  PubMed  Google Scholar 

  21. Wu NQ, Shi HW, Li JJ (2022) Proprotein convertase subtilisin/kexin type 9 and inflammation: an updated review. Front Cardiovasc Med 9:763516. https://doi.org/10.3389/fcvm.2022.763516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, Zanotti I, Lupo MG, Adorni MP, Cicero AFG, Fogacci F, Corsini A, Ferri N (2018) PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep 8(1):2267. https://doi.org/10.1038/s41598-018-20425-x.PMID:29396513;PMCID:PMC5797178

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pradhan AD, Aday AW, Rose LM, Ridker PM (2018) Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy. Circulation 138(2):141–149. https://doi.org/10.1161/CIRCULATIONAHA.118.034645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bohula EA, Giugliano RP, Leiter LA, Verma S, Park JG, Sever PS, Lira Pineda A, Honarpour N, Wang H, Murphy SA, Keech A, Pedersen TR, Sabatine MS (2018) Inflammatory and cholesterol risk in the fourier trial. Circulation 138(2):131–140. https://doi.org/10.1161/CIRCULATIONAHA.118.034032

    Article  CAS  PubMed  Google Scholar 

  25. An T, Hao J, Sun S, Li R, Yang M, Cheng G, Zou M (2017) Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos Int 28(1):47–57. https://doi.org/10.1007/s00198-016-3844-8

    Article  CAS  PubMed  Google Scholar 

  26. Chamani S, Liberale L, Mobasheri L, Montecucco F, Al-Rasadi K, Jamialahmadi T, Sahebkar A (2021) The role of statins in the differentiation and function of bone cells. Eur J Clin Invest 51(7):e13534. https://doi.org/10.1111/eci.13534

    Article  CAS  PubMed  Google Scholar 

  27. Jadhav SB, Jain GK (2006) Statins and osteoporosis: new role for old drugs. J Pharm Pharmacol 58(1):3–18. https://doi.org/10.1211/jpp.58.1.0002

    Article  CAS  PubMed  Google Scholar 

  28. Yadav K, Sharma M, Ferdinand KC (2016) Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: present perspectives and future horizons. Nutr Metab Cardiovasc Dis 26(10):853–862. https://doi.org/10.1016/j.numecd.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  29. Nishikido T, Ray KK (2018) Inclisiran for the treatment of dyslipidemia. Expert Opin Investig Drugs 27(3):287–294. https://doi.org/10.1080/13543784.2018.1442435

    Article  CAS  PubMed  Google Scholar 

  30. Waterloo S, Ahmed LA, Center JR, Eisman JA, Morseth B, Nguyen ND, Nguyen T, Sogaard AJ, Emaus N (2012) Prevalence of vertebral fractures in women and men in the population-based Tromsø Study. BMC Musculoskelet Disord 13:3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hennekens CH, Demets D (2009) The need for large-scale randomized evidence without undue emphasis on small trials, meta-analyses, or subgroup analyses. JAMA 302(21):2361–2362. https://doi.org/10.1001/jama.2009.1756

    Article  CAS  PubMed  Google Scholar 

  32. IntHout J, Ioannidis JP, Borm GF, Goeman JJ (2015) Small studies are more heterogeneous than large ones: a meta-meta-analysis. J Clin Epidemiol 68(8):860–9. https://doi.org/10.1016/j.jclinepi.2015.03.017

    Article  PubMed  Google Scholar 

  33. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, Wu R, Pordy R (2012) Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 380(9836):29–36. https://doi.org/10.1016/S0140-6736(12)60771-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the help from the library staff with finding the literature.

Funding

This work was supported by National Natural Science Foundation of China (Nos. 81970698, 81900805, and 81970708), Beijing Natural Science Foundation (No. 7202216), Peking University People's Hospital Research and Development Funds (Project RS2022-03). The funding agencies had no roles in the study design, data collection or analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XLC and LNJ designed this study. FL, WJY and CL searched the literature. FL, WJY, LC and SYH extracted data. FL, CL and WJY analysed data. FL and XLC wrote the first draft of the manuscript. All authors contributed to revisions of the manuscript.

Corresponding authors

Correspondence to Xiaoling Cai or Linong Ji.

Ethics declarations

Conflict of interest

Fang Lv, Xiaoling Cai, Chu Lin, Wenjia Yang, Suiyuan Hu, Linong Ji declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 653 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Cai, X., Lin, C. et al. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and the Risk of Fracture: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Calcif Tissue Int 113, 175–185 (2023). https://doi.org/10.1007/s00223-023-01085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01085-0

Keywords

Navigation