Skip to main content

Advertisement

Log in

Phenanthrenoid Coelogin Isolated from Coelogyne cristata Exerts Osteoprotective Effect Through MAPK-Mitogen-Activated Protein Kinase Signaling Pathway

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis is a major health problem in postmenopausal women globally. This study determined the mechanism through which coelogin stimulates osteoblastogenesis and its osteoprotective and bone regenerating potential. Coelogin effect on primary calvarial osteoblast cells was determined by measuring alkaline phosphatase activity, mineralization, osteoblast survival, and apoptosis and protein expression studies. The osteoprotective effect of coelogin was also evaluated on osteopenic adult female Swiss mice. At autopsy, bones were collected for dynamic and histomorphometry studies. Serum samples were also collected for assessment of serum parameters. Coelogin treatment led to increased osteoblast proliferation, survival, differentiation, and mineralization in osteoblast cells. Coelogin supplementation to Ovx mice promoted new bone formation, prevented Ovx-induced deterioration of bone microarchitecture, and enhanced bone regeneration. In addition, signaling studies revealed that coelogin treatment activates the ER-Erk and Akt-dependent signaling pathways which stimulate the osteoblastogenesis in osteoblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garnero P, Delmas PD (2004) Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact 4(1):50

    CAS  PubMed  Google Scholar 

  2. Tabacco G, Tay YD, Cusano NE, Williams J, Omeragic B, Majeed R, Almonte MG, Rubin MR, Bilezikian JP (2019) Quality of life in hypoparathyroidism improves with rhPTH(1–84) throughout 8 years of therapy. J Clin Endocrinol Metab 104:2748–2756. https://doi.org/10.1210/jc.2018-02430

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noel SE, Mangano KM, Griffith JL, Wright NC, Dawson-Hughes B, Tucker KL (2018) Prevalence of osteoporosis and low bone mass among Puerto Rican older adults. J Bone Miner Res 33(3):396–403. https://doi.org/10.1002/jbmr.3315

    Article  PubMed  Google Scholar 

  4. Reid IR (2008) Anti-resorptive therapies for osteoporosis. Seminars in cell & developmental biology, vol 19. Academic Press, Cambridge, pp 473–478

    Google Scholar 

  5. Deal C (2009) Potential new drug targets for osteoporosis. Nat Clin Pract Rheumatol 5:20–27. https://doi.org/10.1038/ncprheum0977

    Article  CAS  PubMed  Google Scholar 

  6. Anagnostis P, Gkekas NK, Potoupnis M, Kenanidis E, Tsiridis E, Goulis DG (2019) New therapeutic targets for osteoporosis. Maturitas 120:1–6

    Article  CAS  Google Scholar 

  7. Wojda SJ, Donahue SW (2018) Parathyroid hormone for bone regeneration. J Orthop Res 36(10):2586–2594

    Article  CAS  Google Scholar 

  8. Wein MN, Kronenberg HM (2018) Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med 8(8):a031237

    Article  Google Scholar 

  9. Dobnig H, Turner RT (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136:3632–3638. https://doi.org/10.1210/endo.136.8.7628403

    Article  CAS  PubMed  Google Scholar 

  10. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446. https://doi.org/10.1172/JCI6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sen S, Chakraborty R (2017) Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J Tradit Complement Med 7(2):234–244

    Article  Google Scholar 

  12. Sharma C, Mansoori MN, Dixit M, Shukla P, Kumari T, Bhandari SP, Narender T, Singh D, Arya KR (2014) Ethanolic extract of Coelogyne cristata Lindley (Orchidaceae) and its compound coelogin promote osteoprotective activity in ovariectomized estrogen deficient mice. Phytomedicine 21:1702–1707. https://doi.org/10.1016/j.phymed.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  13. Tripathi JK, Pal S, Awasthi B, Kumar A, Tandon A, Mitra K, Chattopadhyay C, Ghosh JK (2015) Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Biomaterials 56:92–103. https://doi.org/10.1016/j.biomaterials.2015.03.046

    Article  CAS  PubMed  Google Scholar 

  14. Pal KK, China SP, Mittal M, Shrivastava R, Taneja I, Hossain Z, Mandalapu D, Gayen JR, Wahajuddin M, Sharma VL (2016) Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats. Toxicol Appl Pharmacol 295:12–25. https://doi.org/10.1016/J.TAAP.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  15. Bhargavan B, Gautam AK, Singh D, Kumar A, Chaurasia S, Tyagi AM, Yadav DK, Mishra JS, SinghAB SS, Goel A (2009) Methoxylated isoflavones, cajanin and isoformononetin, have non-estrogenic bone forming effect via differential mitogen activated protein kinase (MAPK) signaling. J Cell Biochem 108:388–399. https://doi.org/10.1002/jcb.22264

    Article  CAS  PubMed  Google Scholar 

  16. Adhikary S, Choudhary D, Ahmad N, Karvande A, Kumar A, Banala VT, Mishra PR, Trivedi R (2018) Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival. Nutrition 53:64–76. https://doi.org/10.1016/j.nut.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  17. Meleti Z, Shapiro IM, Adams CS (2000) Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone 27:359–366. https://doi.org/10.1016/S8756-3282(00)00346-X

    Article  CAS  PubMed  Google Scholar 

  18. Jia TL, Wang HZ, Xie LP, Wang XY, Zhang RQ (2003) Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem Pharmacol 65:709–715. https://doi.org/10.1016/S0006-2952(02)01585-X

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K (2003) Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann N Y Acad Sci 1010:143–147. https://doi.org/10.1196/annals.1299.023

    Article  CAS  PubMed  Google Scholar 

  20. Nagase Y, Iwasawa M, Akiyama T, KadonoY NM, Oshima Y, Yasui T, Matsumoto T, Hirose J, Nakamura H, Miyamoto T (2009) Anti-apoptotic molecule Bcl-2 regulates the differentiation, activation, and survival of both osteoblasts and osteoclasts. J Biol Chem 284:36659–36669. https://doi.org/10.1074/jbc.M109.016915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calderone L, Grimes P, Shalev M (1986) Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice. Exp Eye Res 42:331–337. https://doi.org/10.1016/0014-4835(86)90026-6

    Article  CAS  PubMed  Google Scholar 

  22. Hara K, Kobayashi M, Akiyama Y (2002) Vitamin K2 (menatetrenone) inhibits bone loss induced by prednisolone partly through enhancement of bone formation in rats. Bone 31:575–581. https://doi.org/10.1016/S8756-3282(02)00874-8

    Article  CAS  PubMed  Google Scholar 

  23. Chen HL, Demiralp B, Schneider A, Koh AJ, Silve C, Wang CY, McCauley LK (2002) Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 277:19374–19381. https://doi.org/10.1074/jbc.m108913200

    Article  CAS  PubMed  Google Scholar 

  24. Chau JF, Leong WF, Li B (2009) Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol 24:1593–1606. https://doi.org/10.14670/hh-24.1593

    Article  CAS  PubMed  Google Scholar 

  25. Yang XS, Liu S, Liu YJ, Liu JW, Liu TJ, Wang XQ, Yan Q (2010) Overexpression of fucosyltransferase IV promotes A431 cell proliferation through activating MAPK and PI3K/Akt signaling pathways. J Cell Physiol 225:612–619. https://doi.org/10.1002/jcp.22250

    Article  CAS  PubMed  Google Scholar 

  26. He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, Lee KM, Cao YP, Li G, Wei L, Hung LK (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48:1388–1400. https://doi.org/10.1016/j.bone.2011.03.720

    Article  PubMed  Google Scholar 

  27. Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24:489–494. https://doi.org/10.1007/s00198-012-1978-x

    Article  CAS  PubMed  Google Scholar 

  28. He YX, Liu Z, Pan XH, Tang T, Guo BS, Zheng LZ, Xie XH, Wang XL, Lee KM, Li G, Cao YP (2012) Deletion of estrogen receptor beta accelerates early stage of bone healing in a mouse osteotomy model. Osteoporos Int 23:377–389. https://doi.org/10.1007/s00198-011-1812-x

    Article  CAS  PubMed  Google Scholar 

  29. Khan K, Sharan K, Swarnkar G, Chakravarti B, Mittal M, Barbhuyan TK, China SP, Khan MP, Nagar GK, Yadav D, Dixit P (2013) Positive skeletal effects of cladrin, a naturally occurring dimethoxydaidzein, in osteopenic rats that were maintained after treatment discontinuation. Osteoporos Int 24:1455–1470. https://doi.org/10.1007/s00198-012-2121-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supporting Grants: Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific and Industrial Research (CSIR), National Medicinal Plants Board (NMPB) project number R&D/UP-01/2015, Ministry of AYUSH, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narender Tadigoppula or Divya Singh.

Ethics declarations

Conflict of interest

Ravi Prakash, Tripti Mishra, Kapil Dev, Kriti Sharma, Jitendra Kuldeep, Aijaz Ahmad John, Alok Tripathi, Chetan Sharma, Kamal Ram Arya, Brijesh Kumar, Mohd Imran Siddiqi, Narender Tadigoppula, and Divya Singh have no conflicts of interest.

Human and Animal Rights and Informed Consent

The experimental procedure was performed according to the regulations and guidelines approved by the Institutional Animal Ethics Committee (IAEC), Council of Scientific and Industrial Research-Central Drug Research Institute (CPCSEA Registration number: 34/GO/REBI/S/99 dated 12.3.15; Approval reference number: IAEC/2012/70N/Renew 05 (214/16) dated 4.11.2016) and Council for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Social Justice and Empowerment, Government of India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The CDRI communication number is 10203.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, R., Mishra, T., Dev, K. et al. Phenanthrenoid Coelogin Isolated from Coelogyne cristata Exerts Osteoprotective Effect Through MAPK-Mitogen-Activated Protein Kinase Signaling Pathway. Calcif Tissue Int 109, 32–43 (2021). https://doi.org/10.1007/s00223-021-00818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00818-3

Keywords

Navigation