Skip to main content

Advertisement

Log in

Icariin Stimulates Differentiation and Suppresses Adipocytic Transdifferentiation of Primary Osteoblasts Through Estrogen Receptor-Mediated Pathway

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Icariin, the main constituent of Herba Epimedii, appears to be a promising alternative to classic drugs used to treat osteoporosis. However, the detailed molecular mechanisms of its action and the role of icariin in the cross-talk between osteoblasts and adipocytes remain unclear. The present study was designed to investigate the gene expression profile of primary osteoblasts in the presence of icariin, and the effects of icariin on the differentiation and adipogenic transdifferentiation of osteoblasts. Cellular and molecular markers expressed during osteoblastic differentiation were assessed by cytochemical analysis, real-time quantitative PCR, Western blotting, and cDNA microarray analysis. Results indicated that icariin up-regulated the expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2), and collagen type 1 (Col1) genes, and down-regulated the expression of the peroxisome proliferator-activated receptor γ (Pparg) and CCAAT/enhancer-binding protein β (Cebpb) genes. These effects were blocked by ICI 182,780, suggesting that icariin may be acting via the estrogen receptor (ER). Results also demonstrated that the ratio of osteoprotegerin (Opg)/receptor activator of nuclear factor kappa B ligand (Rankl) expression was up-regulated following treatment with icariin. In total, osteoblastic gene expression profile analysis suggested that 33 genes were affected by icariin; these could be sub-divided into nine functional categories. It appears that icariin could stimulate the differentiation and mineralization of osteoblasts, regulate the differentiation of osteoclasts, and inhibit the adipogenic transdifferentiation of osteoblasts, therefore increasing the number of osteoblasts undergoing differentiation to mature osteoblasts, via an ER-mediated pathway. In summary, icariin may exhibit beneficial effects on bone health, especially for patients with osteoporosis and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delaisse JM (2014) The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. BoneKey Rep 3:561. doi:10.1038/bonekey.2014.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys. doi:10.1016/j.abb.2014.05.003

    PubMed  Google Scholar 

  3. Lerner UH (2006) Bone remodeling in post-menopausal osteoporosis. J Dent Res 85(7):584–595

    Article  CAS  PubMed  Google Scholar 

  4. Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, Wang L, Fan J, Zhang HY, Han YH, Li XJ, Shi J, Liu J, Yang L, Luo ZJ (2014) Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One 9(6):e99137. doi:10.1371/journal.pone.0099137

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berendsen AD, Olsen BR (2014) Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology. Cell Mol Life Sci: CMLS 71(3):493–497. doi:10.1007/s00018-013-1440-z

    Article  CAS  PubMed  Google Scholar 

  6. Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J: Off Publ Fed Am Soc Exp Biol 18(9):980–982. doi:10.1096/fj.03-1100fje

    CAS  Google Scholar 

  7. James AW (2013) Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica 2013:684736. doi:10.1155/2013/684736

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharan K, Siddiqui JA, Swarnkar G, Maurya R, Chattopadhyay N (2009) Role of phytochemicals in the prevention of menopausal bone loss: evidence from in vitro and in vivo, human interventional and pharma-cokinetic studies. Curr Med Chem 16(9):1138–1157

    Article  CAS  PubMed  Google Scholar 

  9. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD (2002) Postmenopausal hormone replacement therapy: scientific review. JAMA 288(7):872–881

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Lien EJ, Lien LL (2003) Chemical and pharmacological investigations of Epimedium species: a survey. Prog Drug Res Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 60:1–57

    CAS  PubMed  Google Scholar 

  11. Chen WF, Mok SK, Wang XL, Lai KH, Lai WP, Luk HK, Leung PC, Yao XS, Wong MS (2011) Total flavonoid fraction of the Herba epimedii extract suppresses urinary calcium excretion and improves bone properties in ovariectomised mice. Br J Nutr 105(2):180–189. doi:10.1017/S0007114510003247

    Article  CAS  PubMed  Google Scholar 

  12. Xie F, Wu CF, Lai WP, Yang XJ, Cheung PY, Yao XS, Leung PC, Wong MS (2005) The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. Evidence-Based Complement Altern Med: eCAM 2(3):353–361. doi:10.1093/ecam/neh101

    Article  Google Scholar 

  13. Mok SK, Chen WF, Lai WP, Leung PC, Wang XL, Yao XS, Wong MS (2010) Icariin protects against bone loss induced by oestrogen deficiency and activates oestrogen receptor-dependent osteoblastic functions in UMR 106 cells. Br J Pharmacol 159(4):939–949. doi:10.1111/j.1476-5381.2009.00593.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nian H, Ma MH, Nian SS, Xu LL (2009) Antiosteoporotic activity of icariin in ovariectomized rats. Phytomed: Int J Phytother Phytopharmacol 16(4):320–326. doi:10.1016/j.phymed.2008.12.006

    Article  CAS  Google Scholar 

  15. Li XF, Xu H, Zhao YJ, Tang DZ, Xu GH, Holz J, Wang J, Cheng SD, Shi Q, Wang YJ (2013) Icariin augments bone formation and reverses the phenotypes of osteoprotegerin-deficient mice through the activation of Wnt/beta-Catenin-BMP signaling. Evidence-Based Complement Altern Med: eCAM 2013:652317. doi:10.1155/2013/652317

    Google Scholar 

  16. Song L, Zhao J, Zhang X, Li H, Zhou Y (2013) Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur J Pharmacol 714(1–3):15–22. doi:10.1016/j.ejphar.2013.05.039

    Article  CAS  PubMed  Google Scholar 

  17. Cao H, Ke Y, Zhang Y, Zhang CJ, Qian W, Zhang GL (2012) Icariin stimulates MC3T3-E1 cell proliferation and differentiation through up-regulation of bone morphogenetic protein-2. Int J Mol Med 29(3):435–439. doi:10.3892/ijmm.2011.845

    CAS  PubMed  Google Scholar 

  18. Huang J, Yuan L, Wang X, Zhang TL, Wang K (2007) Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life Sci 81(10):832–840. doi:10.1016/j.lfs.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh TP, Sheu SY, Sun JS, Chen MH (2011) Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-kappaB regulated HIF-1alpha and PGE(2) synthesis. Phytomed: Int J Phytother Phytopharmacol 18(2–3):176–185. doi:10.1016/j.phymed.2010.04.003

    Article  CAS  Google Scholar 

  20. Zhang D, Zhang J, Fong C, Yao X, Yang M (2012) Herba epimedii flavonoids suppress osteoclastic differentiation and bone resorption by inducing G2/M arrest and apoptosis. Biochimie 94(12):2514–2522. doi:10.1016/j.biochi.2012.06.033

    Article  CAS  PubMed  Google Scholar 

  21. Zhang D, Yi C, Qi S, Yao X, Yang M (2010) Effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts. Methods Mol Biol 625:41–53. doi:10.1007/978-1-60761-579-8_5

    Article  CAS  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  23. Fong CC, Zhang Q, Shi YF, Wu RS, Fong WF, Yang M (2007) Effect of hypoxia on RAW264.7 macrophages apoptosis and signaling. Toxicology 235(1–2):52–61. doi:10.1016/j.tox.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD (1999) Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res 13:38–48

    Article  CAS  PubMed  Google Scholar 

  25. Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P (2003) Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials 24(4):649–654

    Article  CAS  PubMed  Google Scholar 

  26. Liang W, Lin M, Li X, Li C, Gao B, Gan H, Yang Z, Lin X, Liao L, Yang M (2012) Icariin promotes bone formation via the BMP-2/Smad4 signal transduction pathway in the hFOB 1.19 human osteoblastic cell line. Int J Mol Med 30(4):889–895. doi:10.3892/ijmm.2012.1079

    CAS  PubMed  Google Scholar 

  27. Devlin MJ, Rosen CJ (2014) The bone-fat interface: basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. doi:10.1016/S2213-8587(14)70007-5

    PubMed  PubMed Central  Google Scholar 

  28. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98(2):251–266. doi:10.1002/jcb.20777

    Article  CAS  PubMed  Google Scholar 

  29. Zhang W, Yang N, Shi XM (2008) Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem 283(8):4723–4729. doi:10.1074/jbc.M704147200

    Article  CAS  PubMed  Google Scholar 

  30. Zhang D, Pan B, Cook RL, Xing B (2015) Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures. Environ Pollut 196:292–299. doi:10.1016/j.envpol.2014.10.020

    Article  CAS  PubMed  Google Scholar 

  31. Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM, Morris DC (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50(5):1087–1094

    CAS  PubMed  Google Scholar 

  32. Lazarenko OP, Rzonca SO, Suva LJ, Lecka-Czernik B (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38(1):74–84. doi:10.1016/j.bone.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  33. Manolagas SC, O’Brien CA, Almeida M (2013) The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 9(12):699–712. doi:10.1038/nrendo.2013.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song C, Wang J, Song Q, Li X, Chen Z, Ma Q, Liu Z, Jia H, Dang G (2008) Simvastatin induces estrogen receptor-alpha (ER-alpha) in murine bone marrow stromal cells. J Bone Miner Metab 26(3):213–217. doi:10.1007/s00774-007-0820-6

    Article  PubMed  Google Scholar 

  35. Xiao HH, Fung CY, Mok SK, Wong KC, Ho MX, Wang XL, Yao XS, Wong MS (2014) Flavonoids from Herba epimedii selectively activate estrogen receptor alpha (ERalpha) and stimulate ER-dependent osteoblastic functions in UMR-106 cells. J Steroid Biochem Mol Biol 143:141–151. doi:10.1016/j.jsbmb.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  36. Vukicevic S, Grgurevic L (2009) BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev 20(5–6):441–448. doi:10.1016/j.cytogfr.2009.10.020

    Article  CAS  PubMed  Google Scholar 

  37. Niemeier A, Kassem M, Toedter K, Wendt D, Ruether W, Beisiegel U, Heeren J (2005) Expression of LRP1 by human osteoblasts: a mechanism for the delivery of lipoproteins and vitamin K1 to bone. J Bone Miner Res: Off J Am Soc Bone Miner Res 20(2):283–293. doi:10.1359/JBMR.041102

    Article  CAS  Google Scholar 

  38. Grey A, Zhu Q, Watson M, Callon K, Cornish J (2006) Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol Cell Endocrinol 251(1–2):96–102. doi:10.1016/j.mce.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  39. Sunters A, Thomas DP, Yeudall WA, Grigoriadis AE (2004) Accelerated cell cycle progression in osteoblasts overexpressing the c-fos proto-oncogene: induction of cyclin A and enhanced CDK2 activity. J Biol Chem 279(11):9882–9891. doi:10.1074/jbc.M310184200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (No. 81402933, 81503465), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [(2014)-1685], the Natural Science Foundation of Guangdong Province (No. 2014A030313539, 2015A030310263), the Project for the Development of Social Science Research of Dongguan (No. 2013108101054), the Medical Scientific Research Foundation of Guangdong Province (B2014302, A2015347), 2014 Project of Teaching Quality and Teaching Reform of Undergraduate Course in Colleges and Universities in Guangdong Province, and the Doctor Scientific Start-up Fund Projects of Guangdong Medical College (B2012008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Zhang or Mengsu Yang.

Ethics declarations

Conflict of Interest

Dawei Zhang, Chichun Fong, Zhenbin Jia, Liao Cui, Xinsheng Yao, and Mengsu Yang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All experiments were approved by the experimental animal ethics committee at Gugangdong Medical University and were conducted in accordance with the guidelines for the management and handling of experimental animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Fong, C., Jia, Z. et al. Icariin Stimulates Differentiation and Suppresses Adipocytic Transdifferentiation of Primary Osteoblasts Through Estrogen Receptor-Mediated Pathway. Calcif Tissue Int 99, 187–198 (2016). https://doi.org/10.1007/s00223-016-0138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0138-2

Keywords

Navigation