Skip to main content
Log in

Sharp eigenvalue bounds and minimal surfaces in the ball

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove existence and regularity of metrics on a surface with boundary which maximize \(\sigma _1 L\) where \(\sigma _1\) is the first nonzero Steklov eigenvalue and \(L\) the boundary length. We show that such metrics arise as the induced metrics on free boundary minimal surfaces in the unit ball \(B^n\) for some \(n\). In the case of the annulus we prove that the unique solution to this problem is the induced metric on the critical catenoid, the unique free boundary surface of revolution in \(B^3\). We also show that the unique solution on the Möbius band is achieved by an explicit \(S^1\) invariant embedding in \(B^4\) as a free boundary surface, the critical Möbius band. For oriented surfaces of genus \(0\) with arbitrarily many boundary components we prove the existence of maximizers which are given by minimal embeddings in \(B^3\). We characterize the limit as the number of boundary components tends to infinity to give the asymptotically sharp upper bound of \(4\pi \). We also prove multiplicity bounds on \(\sigma _1\) in terms of the topology, and we give a lower bound on the Morse index for the area functional for free boundary surfaces in the ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36, 235–249 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Besson, G.: Sur la multiplicité de la première valeur propre des surfaces riemanniennes. Ann. Inst. Fourier (Grenoble) 30(1), 109–128 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colding, T., Minicozzi II, W.: A course in minimal surfaces. In: Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011)

  5. Ejiri, N., Micallef, M.: Comparison between second variation of area and second variation of energy of a minimal surface. Adv. Calc. Var. 1(3), 223–239 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. El Soufi, A., Giacomini, H., Jazar, M.: A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J. 135, 181–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. El Soufi, A., Ilias, S.: Immersions minimales, première valeur propre du laplacien et volume conforme. Math. Ann. 275(2), 257–267 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. El Soufi, A., Ilias, S.: Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195(1), 91–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33(2), 199–211 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraser, A., Li, M.: Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary. J. Differ. Geom. 96(2), 183–200 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Girouard, A.: Fundamental tone, concentration of density, and conformal degeneration on surfaces. Can. J. Math. 61, 548–565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Girouard, A., Polterovich, I.: On the Hersch–Payne–Schiffer estimates for the eigenvalues of the Steklov problem. Funct. Anal. Appl. 44(2), 106–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grüter, M., Hildebrandt, S., Nitsche, J.C.C.: On the boundary behavior of minimal surfaces with a free boundary which are not minima of area. Manuscripta Math. 35, 387–410 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grüter, M., Jost, J.: Allard type regularity results for varifolds with free boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 129–169 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Hersch, J.: Quatre propriétés isopérimétriqes de membranes sphériques homogènes. C.R. Acad. Sci. Paris Sér. A-B 270, A1645–A1648 (1970)

    MathSciNet  Google Scholar 

  17. Jakobson, D., Nadirashvili, N., Polterovich, I.: Extremal metric for the first eigenvalue on a Klein bottle. Can. J. Math. 58, 381–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jammes, P.: Prescription du spectre de Steklov dans une classe conform. Anal. PDE. 7(3), 529–549 (2014)

  19. Jammes, P.: Multiplicité du spectre de Steklov sur les surfaces et nombre chromatique. arXiv:1304.4559

  20. Karpukhin, M., Kokarev, G., Polterovich, I.: Multiplicity bounds for Steklov eigenvalues on Riemann surfaces. Ann. Inst. Fourier. 64(6), 2481–2502 (2014)

  21. Kokarev, G.: Variational aspects of Laplace eigenvalues on Riemannian surfaces. Adv. Math. 258, 191–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuttler, J., Sigillito, V.: An inequality of a Stekloff eigenvalue by the method of defect. Proc. Am. Math. Soc. 20, 357–360 (1969)

    MathSciNet  MATH  Google Scholar 

  23. Li, P., Yau, S.-T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moore, J.D., Schulte, T.: Minimal disks and compact hypersurfaces in Euclidean space. Proc. Am. Math. Soc. 94(2), 321–328 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morrey Jr, C.B.: Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer, New York (1966)

  26. Nadirashvili, N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6(5), 877–897 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schoen, R.: Estimates for stable minimal surfaces in three-dimensional manifolds. Seminar on minimal submanifolds. In: Ann. of Math. Stud., vol. 103, pp. 111–126. Princeton Univ. Press, Princeton (1983)

  28. Schoen, R.: Analytic aspects of the harmonic map problem. In: Chern, S.S. (ed.) Seminar on Nonlinear PDE, pp. 321–358. MSRI Publication, Springer, Berlin (1984)

  29. Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Rat. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for several valuable comments which greatly improved the exposition and clarified the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailana Fraser.

Additional information

A. Fraser was partially supported by the Natural Sciences and Engineering Research Council of Canada and R. Schoen was partially supported by the National Science Foundation [DMS-1105323 & 1404966].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, A., Schoen, R. Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. math. 203, 823–890 (2016). https://doi.org/10.1007/s00222-015-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0604-x

Mathematics Subject Classification

Navigation