Skip to main content

Advertisement

Log in

The role of serotonin in memory: interactions with neurotransmitters and downstream signaling

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Serotonin, or 5-hydroxytryptamine (5-HT), is found to be involved in many physiological or pathophysiological processes including cognitive function. Seven distinct receptors (5-HT1–7), each with several subpopulations, have been identified for serotonin, which are different in terms of localization and downstream signaling. Because of the development of selective agonists and antagonists for these receptors as well as transgenic animal models of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has improved in recent years. A large body of evidence indicates the interplay between serotonergic transmission and other neurotransmitters including acetylcholine, dopamine, γ-aminobutyric acid (GABA) and glutamate, in the neurobiological control of learning and memory. In addition, there has been an alteration in the density of serotonergic receptors in aging and Alzheimer’s disease, and serotonin modulators are found to alter the process of amyloidogenesis and exert cognitive-enhancing properties. Here, we discuss the serotonin-induced modulation of various systems involved in mnesic function including cholinergic, dopaminergic, GABAergic, glutamatergic transmissions as well as amyloidogenesis and intracellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2PSDT:

Two-platform spatial discrimination task

3xTg-AD:

Triple-transgenic mouse model of Alzheimer’s disease

5-HT:

5-Hydroxytryptamine

AC:

Adenylate cyclase

Ach:

Acetylcholine

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

ARN:

Anterior raphe nucleus

Aβ:

Amyloid β

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CPP:

Conditioned place preference

CREB:

cAMP-response element binding

DA:

Dopamine

DH:

Dorsal hippocampus

DMTS:

Delayed matching to sample

DNPTP:

Delayed non-matching to position

DRN:

Dorsal raphe nucleus

EPAC:

Exchange proteins activated by cAMP

EPSCs:

Excitatory postsynaptic currents

ERK:

Extracellular signal-regulated kinase

FC:

Frontal cortex

GABA:

Gamma (γ)-aminobutyric acid

GAD:

Glutamic acid decarboxylase

Gi :

Inhibitory G-protein

Glu:

Glutamate

GPCRs:

G-protein-coupled receptors

Gs:

Stimulatory G-protein

GSK3:

Glycogen synthase kinase 3

i.c.v.:

Intracerebroventricular

i.p.:

Intraperitoneal

i.v.:

Intravenous

LTP:

Long-term potentiation

LTD:

Long-term depression

MAPK:

Mitogen-activated protein kinases

MBN:

Magnocellular nucleus basalis

mGluR:

Metabotropic glutamate receptor

MS/vDB:

Medial septum and the adjacent vertical limb of the diagonal band of Broca area

MWM:

Morris water maze

NAc:

Nucleus accumbens

NMDA:

N-Methyl-D-aspartate

NO:

Nitric oxide

ORT:

Object recognition task

PA:

Passive avoidance

PCA:

p-Chloroamphetamine

PDE:

Phosphodiesterase

PFC:

Prefrontal cortex

PI:

Pavlovian/instrumental autoshaping

PKA:

Protein kinase A

PKC:

Protein kinase C

PKG:

Protein kinase G

PKM:

Protein kinase M

PLA2:

Phospholipase A2

PS1:

Presenilin-1

PT:

Pass through

s.c.:

Subcutaneous

SA:

Self-administration

sIPSC:

Spontaneous inhibitory postsynaptic current

VTA:

Ventral tegmental area

References

  • Acosta JI, Boynton FA, Kirschner KF, Neisewander JL (2005) Stimulation of 5-HT1B receptors decreases cocaine- and sucrose-seeking behavior. Pharmacol Biochem Behav 80:297–307. doi:10.1016/j.pbb.2004.12.001

    CAS  PubMed  Google Scholar 

  • Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320. doi:10.1016/j.pharmthera.2006.08.004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altman HJ, Stone WS, Ogren SO (1987) Evidence for a possible functional interaction between serotonergic and cholinergic mechanisms in memory retrieval. Behav Neural Biol 48:49–62

    CAS  PubMed  Google Scholar 

  • Andrews CM, Kung HF, Lucki I (2005) The 5-HT1A receptor modulates the effects of cocaine on extracellular serotonin and dopamine levels in the nucleus accumbens. Eur J Pharmacol 508:123–130. doi:10.1016/j.ejphar.2004.12.033

    CAS  PubMed  Google Scholar 

  • Angers A, Fioravante D, Chin J, Cleary LJ, Bean AJ (2002) Byrne JH (2002) Serotonin stimulates phosphorylation of Aplysia synapsin and alters its subcellular distribution in sensory neurons. J Neurosci 22:5412–5422.

    CAS  PubMed  Google Scholar 

  • Arjona AA, Pooler AM, Lee RK, Wurtman RJ (2002) Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res 951:135–140

    CAS  PubMed  Google Scholar 

  • Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM (2003) The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res 959:58–67

    CAS  PubMed  Google Scholar 

  • Barbas D, DesGroseillers L, Castellucci VF, Carew TJ, Marinesco S (2003) Multiple serotonergic mechanisms contributing to sensitization in Aplysia: evidence of diverse serotonin receptor subtypes. Learn Mem 10:373–386. doi:10.1101/lm.66103

    PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    CAS  PubMed  Google Scholar 

  • Bernedo V, Insua D, Suarez ML, Santamarina G, Sarasa M, Pesini P (2009) Beta-amyloid cortical deposits are accompanied by the loss of serotonergic neurons in the dog. J Comp Neurol 513:417–429. doi:10.1002/cne.21985

    CAS  PubMed  Google Scholar 

  • Bevilaqua L, Ardenghi P, Schroder N et al (1997) Drugs acting upon the cyclic adenosine monophosphate/protein kinase A signalling pathway modulate memory consolidation when given late after training into rat hippocampus but not amygdala. Behav Pharmacol 8:331–338

    CAS  PubMed  Google Scholar 

  • Bisaga A, Sikora J, Kostowski W (1993) The effect of drugs interacting with serotonergic 5HT3 and 5HT4 receptors on morphine place conditioning. Pol J Pharmacol 45:513–519

    CAS  PubMed  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12:2511–2523

    CAS  PubMed  Google Scholar 

  • Boess FG, de Vry J, Erb C et al (2013) Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel alpha7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist. Psychopharmacology 227:1–17. doi:10.1007/s00213-012-2933-4

    CAS  PubMed  Google Scholar 

  • Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230:427–439. doi:10.1007/s00221-013-3512-6

    CAS  PubMed  Google Scholar 

  • Bonaventure P, Aluisio L, Shoblock J et al (2011) Pharmacological blockade of serotonin 5-HT(7) receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission. PLoS One 6:e20210. doi:10.1371/journal.pone.0020210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boulougouris V, Tsaltas E (2008) Serotonergic and dopaminergic modulation of attentional processes. Prog Brain Res 172:517–542. doi:10.1016/S0079-6123(08)00925-4

    CAS  PubMed  Google Scholar 

  • Brambilla A, Ghiorzi A, Pitsikas N, Borsini F (1993) DAU 6215, a novel 5-HT3-receptor antagonist, selectively antagonizes scopolamine-induced deficit in a passive-avoidance task, but not scopolamine-induced hypermotility in rats. J Pharm Pharmacol 45:841–843

    CAS  PubMed  Google Scholar 

  • Broocks A, Little JT, Martin A et al (1998) The influence of ondansetron and m-chlorophenylpiperazine on scopolamine-induced cognitive, behavioral, and physiological responses in young healthy controls. Biol Psychiatry 43:408–416

    CAS  PubMed  Google Scholar 

  • Burmeister JJ, Lungren EM, Kirschner KF, Neisewander JL (2004) Differential roles of 5-HT receptor subtypes in cue and cocaine reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology 29:660–668. doi:10.1038/sj.npp.1300346

    CAS  PubMed  Google Scholar 

  • Byrne JH, Kandel ER (1996) Presynaptic facilitation revisited: state and time dependence. J Neurosci 16:425–435

    CAS  PubMed  Google Scholar 

  • Cai D, Pearce K, Chen S, Glanzman DL (2011) Protein kinase M maintains long-term sensitization and long-term facilitation in Aplysia. J Neurosci 31:6421–6431. doi:10.1523/JNEUROSCI.4744-10.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cammarota M, Bevilaqua LR, Medina JH, Izquierdo I (2008) ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav Brain Res 195:120–128. doi:10.1016/j.bbr.2007.11.029

    CAS  PubMed  Google Scholar 

  • Campbell AD, McBride WJ (1995) Serotonin-3 receptor and ethanol-stimulated dopamine release in the nucleus accumbens. Pharmacol Biochem Behav 51:835–842

    CAS  PubMed  Google Scholar 

  • Carboni E, Acquas E, Leone P, Di Chiara G (1989) 5HT3 receptor antagonists block morphine- and nicotine- but not amphetamine-induced reward. Psychopharmacology 97:175–178

    CAS  PubMed  Google Scholar 

  • Carey RJ, Depalma G, Damianopoulos E, Muller CP, Huston JP (2004) The 5-HT1A receptor and behavioral stimulation in the rat: effects of 8-OHDPAT on spontaneous and cocaine-induced behavior. Psychopharmacology 177:46–54. doi:10.1007/s00213-004-1917-4

    CAS  PubMed  Google Scholar 

  • Carli M, Bonalumi P, Samanin R (1997a) WAY 100635, a 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal administration of scopolamine or 7-chloro-kynurenic acid. Brain Res 774:167–174

    CAS  PubMed  Google Scholar 

  • Carli M, Luschi R, Samanin R (1997b) Dose-related impairment of spatial learning by intrahippocampal scopolamine: antagonism by ondansetron, a 5-HT3 receptor antagonist. Behav Brain Res 82:185–194

    CAS  PubMed  Google Scholar 

  • Carli M, Bonalumi P, Samanin R (1998) Stimulation of 5-HT1A receptors in the dorsal raphe reverses the impairment of spatial learning caused by intrahippocampal scopolamine in rats. Eur J Neurosci 10:221–230

    CAS  PubMed  Google Scholar 

  • Carli M, Silva S, Balducci C, Samanin R (1999) WAY 100635, a 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by blockade of hippocampal NMDA receptors. Neuropharmacology 38:1165–1173

    CAS  PubMed  Google Scholar 

  • Carli M, Balducci C, Samanin R (2000) Low doses of 8-OH-DPAT prevent the impairment of spatial learning caused by intrahippocampal scopolamine through 5-HT(1A) receptors in the dorsal raphe. Br J Pharmacol 131:375–381. doi:10.1038/sj.bjp.0703567

    CAS  PubMed  Google Scholar 

  • Carli M, Balducci C, Samanin R (2001) Stimulation of 5-HT(1A) receptors in the dorsal raphe ameliorates the impairment of spatial learning caused by intrahippocampal 7-chloro-kynurenic acid in naive and pretrained rats. Psychopharmacology 158:39–47. doi:10.1007/s002130100837

    CAS  PubMed  Google Scholar 

  • Carlini VP, Poretti MB, Rask-Andersen M et al (2012) Differential effects of fluoxetine and venlafaxine on memory recognition: possible mechanisms of action. Prog Neuropsychopharmacol Biol Psychiatry 38:159–167. doi:10.1016/j.pnpbp.2012.03.004

    CAS  PubMed  Google Scholar 

  • Cervo L, Rozio M, Ekalle-Soppo CB, Carnovali F, Santangelo E, Samanin R (2002) Stimulation of serotonin1B receptors induces conditioned place aversion and facilitates cocaine place conditioning in rats. Psychopharmacology 163:142–150. doi:10.1007/s00213-002-1145-8

    CAS  PubMed  Google Scholar 

  • Chen J, Paredes W, Van Praag HM, Lowinson JH, Gardner EL (1992) Presynaptic dopamine release is enhanced by 5-HT3 receptor activation in medial prefrontal cortex of freely moving rats. Synapse 10:264–266. doi:10.1002/syn.890100308

    CAS  PubMed  Google Scholar 

  • Cho S, Hu Y (2007) Activation of 5-HT4 receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. Exp Neurol 203:274–278. doi:10.1016/j.expneurol.2006.07.021

    CAS  PubMed  Google Scholar 

  • Chugh Y, Saha N, Sankaranarayanan A, Datta H (1991) Enhancement of memory retrieval and attenuation of scopolamine-induced amnesia following administration of 5-HT3 antagonist ICS 205-930. Pharmacol Toxicol 69:105–106

    CAS  PubMed  Google Scholar 

  • Cirrito JR, Disabato BM, Restivo JL et al (2011) Serotonin signaling is associated with lower amyloid-beta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 108:14968–14973. doi:10.1073/pnas.1107411108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Consolo S, Arnaboldi S, Giorgi S, Russi G, Ladinsky H (1994) 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport 5:1230–1232

    CAS  PubMed  Google Scholar 

  • Costa L, Spatuzza M, D’Antoni S et al (2012) Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome. Biol Psychiatry 72:924–933. doi:10.1016/j.biopsych.2012.06.008

    CAS  PubMed  Google Scholar 

  • Da Silva Costa-Aze V, Quiedeville A, Boulouard M, Dauphin F (2012) 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology 222:99–115. doi:10.1007/s00213-011-2627-3

    Google Scholar 

  • Dawson LA, Nguyen HQ, Li P (2001) The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25:662–668. doi:10.1016/S0893-133X(01)00265-2

    CAS  PubMed  Google Scholar 

  • De Deurwaerdere P, Moison D, Navailles S, Porras G, Spampinato U (2005) Regionally and functionally distinct serotonin3 receptors control in vivo dopamine outflow in the rat nucleus accumbens. J Neurochem 94:140–149. doi:10.1111/j.1471-4159.2005.03174.x

    PubMed  Google Scholar 

  • Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, La Grutta V, Esposito E (2001) m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience 103:111–116

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1999) SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38:1195–1205

    PubMed  Google Scholar 

  • Diaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25:10831–10843. doi:10.1523/JNEUROSCI.2999-05.2005

    CAS  PubMed  Google Scholar 

  • Elvander-Tottie E, Eriksson TM, Sandin J, Ogren SO (2009) 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning. Hippocampus 19:1187–1198. doi:10.1002/hipo.20596

    CAS  PubMed  Google Scholar 

  • Eriksson TM, Madjid N, Elvander-Tottie E, Stiedl O, Svenningsson P, Ogren SO (2008) Blockade of 5-HT 1B receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission. Neuropharmacology 54:1041–1050. doi:10.1016/j.neuropharm.2008.02.007

    CAS  PubMed  Google Scholar 

  • Eriksson TM, Delagrange P, Spedding M, Popoli M, Mathe AA, Ogren SO, Svenningsson P (2012) Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Mol Psychiatry 17:173–184. doi:10.1038/mp.2010.131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson TM, Alvarsson A, Stan TL et al (2013) Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol Psychiatry 18:1096–1105. doi:10.1038/mp.2012.130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fakhfouri G, Rahimian R, Ghia JE, Khan WI, Dehpour AR (2012) Impact of 5-HT(3) receptor antagonists on peripheral and central diseases. Drug Discov Today 17:741–747. doi:10.1016/j.drudis.2012.02.009

    CAS  PubMed  Google Scholar 

  • Ferguson SM, Mitchell ES, Neumaier JF (2008) Increased expression of 5-HT6 receptors in the nucleus accumbens blocks the rewarding but not psychomotor activating properties of cocaine. Biol Psychiatry 63:207–213. doi:10.1016/j.biopsych.2007.02.018

    CAS  PubMed  Google Scholar 

  • Filip M, Cunningham KA (2003) Hyperlocomotive and discriminative stimulus effects of cocaine are under the control of serotonin(2C) (5-HT(2C)) receptors in rat prefrontal cortex. J Pharmacol Exp Ther 306:734–743. doi:10.1124/jpet.102.045716

    CAS  PubMed  Google Scholar 

  • Fletcher PJ, Chintoh AF, Sinyard J, Higgins GA (2004) Injection of the 5-HT2C receptor agonist Ro60-0175 into the ventral tegmental area reduces cocaine-induced locomotor activity and cocaine self-administration. Neuropsychopharmacology 29:308–318. doi:10.1038/sj.npp.1300319

    CAS  PubMed  Google Scholar 

  • Fletcher PJ, Rizos Z, Sinyard J, Tampakeras M, Higgins GA (2008) The 5-HT2C receptor agonist Ro60-0175 reduces cocaine self-administration and reinstatement induced by the stressor yohimbine, and contextual cues. Neuropsychopharmacology 33:1402–1412. doi:10.1038/sj.npp.1301509

    CAS  PubMed  Google Scholar 

  • Foley AG, Murphy KJ, Hirst WD et al (2004) The 5-HT(6) receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology 29:93–100. doi:10.1038/sj.npp.1300332

    CAS  PubMed  Google Scholar 

  • Frantz KJ, Hansson KJ, Stouffer DG, Parsons LH (2002) 5-HT(6) receptor antagonism potentiates the behavioral and neurochemical effects of amphetamine but not cocaine. Neuropharmacology 42:170–180

    CAS  PubMed  Google Scholar 

  • Geldenhuys WJ, Van der Schyf CJ (2009) The serotonin 5-HT6 receptor: a viable drug target for treating cognitive deficits in Alzheimer’s disease. Expert Rev Neurother 9:1073–1085. doi:10.1586/ern.09.51

    CAS  PubMed  Google Scholar 

  • Goldsmith BA, Abrams TW (1992) cAMP modulates multiple K+ currents, increasing spike duration and excitability in Aplysia sensory neurons. Proc Natl Acad Sci U S A 89:11481–11485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grant KA, Barrett JE (1991) Blockade of the discriminative stimulus effects of ethanol with 5-HT3 receptor antagonists. Psychopharmacology 104:451–456

    CAS  PubMed  Google Scholar 

  • Harkany T, Dijkstra IM, Oosterink BJ et al (2000) Increased amyloid precursor protein expression and serotonergic sprouting following excitotoxic lesion of the rat magnocellular nucleus basalis: neuroprotection by Ca(2+) antagonist nimodipine. Neuroscience 101:101–114

    CAS  PubMed  Google Scholar 

  • Harkany T, Mulder J, Horvath KM, Keijser J, van der Meeberg EK, Nyakas C, Luiten PG (2001) Oral post-lesion administration of 5-HT(1A) receptor agonist repinotan hydrochloride (BAY x 3702) attenuates NMDA-induced delayed neuronal death in rat magnocellular nucleus basalis. Neuroscience 108:629–642

    CAS  PubMed  Google Scholar 

  • Hart AK, Fioravante D, Liu RY, Phares GA, Cleary LJ, Byrne JH (2011) Serotonin-mediated synapsin expression is necessary for long-term facilitation of the Aplysia sensorimotor synapse. J Neurosci 31:18401–18411. doi:10.1523/JNEUROSCI.2816-11.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hensler JG (2002) Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26:565–573. doi:10.1016/S0893-133X(01)00395-5

    CAS  PubMed  Google Scholar 

  • Herrmann AP, Lunardi P, Pilz LK et al (2012) Effects of the putative antipsychotic alstonine on glutamate uptake in acute hippocampal slices. Neurochem Int 61:1144–1150. doi:10.1016/j.neuint.2012.08.006

    CAS  PubMed  Google Scholar 

  • Hilgert M, Buchholzer M, Jeltsch H, Kelche C, Cassel JC, Klein J (2000) Serotonergic modulation of hippocampal acetylcholine release after long-term neuronal grafting. NeuroReport 11:3063–3065

    CAS  PubMed  Google Scholar 

  • Hodges H, Sowinski P, Sinden JD, Netto CA, Fletcher A (1995) The selective 5-HT3 receptor antagonist, WAY100289, enhances spatial memory in rats with ibotenate lesions of the forebrain cholinergic projection system. Psychopharmacology 117:318–332

    CAS  PubMed  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011a) Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacology 217:13–24. doi:10.1007/s00213-011-2251-2

    CAS  PubMed  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011b) The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J Pharmacol Exp Ther 338:605–614. doi:10.1124/jpet.111.180638

    CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    CAS  PubMed  Google Scholar 

  • Hu JY, Baussi O, Levine A, Chen Y, Schacher S (2011) Persistent long-term synaptic plasticity requires activation of a new signaling pathway by additional stimuli. J Neurosci 31:8841–8850. doi:10.1523/JNEUROSCI.1358-11.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang YY, Kandel ER (2007) 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala. J Neurosci 27:3111–3119. doi:10.1523/JNEUROSCI.3908-06.2007

    CAS  PubMed  Google Scholar 

  • Imperato A, Angelucci L (1989) 5-HT3 receptors control dopamine release in the nucleus accumbens of freely moving rats. Neurosci Lett 101:214–217

    CAS  PubMed  Google Scholar 

  • Jiang LH, Ashby CR Jr, Kasser RJ, Wang RY (1990) The effect of intraventricular administration of the 5-HT3 receptor agonist 2-methylserotonin on the release of dopamine in the nucleus accumbens: an in vivo chronocoulometric study. Brain Res 513:156–160

    CAS  PubMed  Google Scholar 

  • Johnson BA, Ait-Daoud N, Elkashef AM et al (2008a) A preliminary randomized, double-blind, placebo-controlled study of the safety and efficacy of ondansetron in the treatment of methamphetamine dependence. Int J Neuropsychopharmacol 11:1–14. doi:10.1017/S1461145707007778

    CAS  PubMed  Google Scholar 

  • Johnson CN, Ahmed M, Miller ND (2008b) 5-HT6 receptor antagonists: prospects for the treatment of cognitive disorders including dementia. Curr Opin Drug Discov Devel 11:642–654

    CAS  PubMed  Google Scholar 

  • Ju Yeon B, Yeon Hee S (2005) Blockade of 5-HT(3) receptor with MDL 72222 and Y 25130 reduces beta-amyloid protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Eur J Pharmacol 520:12–21. doi:10.1016/j.ejphar.2005.07.021

    Google Scholar 

  • Kagami Y, Shigenobu S, Watanabe S (1992) Neuroprotective effect of 5-HT3 receptor antagonist on ischemia-induced decrease in CA1 field potential in rat hippocampal slices. Eur J Pharmacol 224:51–56

    CAS  PubMed  Google Scholar 

  • Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 18:75–113

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P, Barrow J (1989) Regulation of the mesocorticolimbic dopamine system by glutamic acid receptor subtypes. J Pharmacol Exp Ther 251:378–387

    CAS  PubMed  Google Scholar 

  • Kenakin T (1995) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    CAS  PubMed  Google Scholar 

  • Kendall I, Slotten HA, Codony X, Burgueno J, Pauwels PJ, Vela JM, Fone KC (2011) E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology 213:413–430. doi:10.1007/s00213-010-1854-3

    CAS  PubMed  Google Scholar 

  • Kia HK, Brisorgueil MJ, Daval G, Langlois X, Hamon M, Verge D (1996) Serotonin1A receptors are expressed by a subpopulation of cholinergic neurons in the rat medial septum and diagonal band of Broca–a double immunocytochemical study. Neuroscience 74:143–154

    CAS  PubMed  Google Scholar 

  • King MV, Sleight AJ, Woolley ML, Topham IA, Marsden CA, Fone KC (2004) 5-HT6 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation–an effect sensitive to NMDA receptor antagonism. Neuropharmacology 47:195–204. doi:10.1016/j.neuropharm.2004.03.012

    CAS  PubMed  Google Scholar 

  • Kiser D, Steemers B, Branchi I, Homberg JR (2012) The reciprocal interaction between serotonin and social behaviour. Neurosci Biobehav Rev 36:786–798. doi:10.1016/j.neubiorev.2011.12.009

    CAS  PubMed  Google Scholar 

  • Koenig J, Lecourtier L, Cosquer B, Pereira PM, Cassel JC (2011) Spatial memory alterations by activation of septal 5HT 1A receptors: no implication of cholinergic septohippocampal neurons. Psychopharmacology 214:437–454. doi:10.1007/s00213-010-2049-7

    CAS  PubMed  Google Scholar 

  • Kranz GS, Kasper S, Lanzenberger R (2010) Reward and the serotonergic system. Neuroscience 166:1023–1035. doi:10.1016/j.neuroscience.2010.01.036

    CAS  PubMed  Google Scholar 

  • Lee YS, Choi SL, Lee SH et al (2009) Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia. Proc Natl Acad Sci U S A 106:14634–14639. doi:10.1073/pnas.0907502106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lelong V, Lhonneur L, Dauphin F, Boulouard M (2003) BIMU 1 and RS 67333, two 5-HT4 receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse. Naunyn Schmiedebergs Arch Pharmacol 367:621–628. doi:10.1007/s00210-003-0743-2

    CAS  PubMed  Google Scholar 

  • Lesch KP, Waider J (2012) Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76:175–191. doi:10.1016/j.neuron.2012.09.013

    CAS  PubMed  Google Scholar 

  • Levallet G, Hotte M, Boulouard M, Dauphin F (2009) Increased particulate phosphodiesterase 4 in the prefrontal cortex supports 5-HT4 receptor-induced improvement of object recognition memory in the rat. Psychopharmacology 202:125–139. doi:10.1007/s00213-008-1283-8

    CAS  PubMed  Google Scholar 

  • Lezoualc’h F (2007) 5-HT4 receptor and Alzheimer’s disease: the amyloid connection. Exp Neurol 205:325–329. doi:10.1016/j.expneurol.2007.02.001

    PubMed  Google Scholar 

  • Li Q, Muma NA, Battaglia G, Van de Kar LD (1997) A desensitization of hypothalamic 5-HT1A receptors by repeated injections of paroxetine: reduction in the levels of G(i) and G(o) proteins and neuroendocrine responses, but not in the density of 5-HT1A receptors. J Pharmacol Exp Ther 282:1581–1590

    CAS  PubMed  Google Scholar 

  • Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22:1487–1497. doi:10.1093/cercor/bhr220

    PubMed  Google Scholar 

  • Madsen K, Neumann WJ, Holst K et al (2011) Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer’s disease. J Alzheimers Dis 26:457–466. doi:10.3233/JAD-2011-110056

    CAS  PubMed  Google Scholar 

  • Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L (2006) Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 70:1013–1021. doi:10.1124/mol.106.022756

    PubMed  Google Scholar 

  • Manuel-Apolinar L, Meneses A (2004) 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production. Behav Brain Res 148:179–184

    CAS  PubMed  Google Scholar 

  • Marcos B, Gil-Bea FJ, Hirst WD, Garcia-Alloza M, Ramirez MJ (2006) Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur J Neurosci 24:1299–1306. doi:10.1111/j.1460-9568.2006.05003.x

    PubMed  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    CAS  PubMed  Google Scholar 

  • Marsden CA, King MV, Fone KC (2011) Influence of social isolation in the rat on serotonergic function and memory–relevance to models of schizophrenia and the role of 5-HT(6) receptors. Neuropharmacology 61:400–407. doi:10.1016/j.neuropharm.2011.03.003

    CAS  PubMed  Google Scholar 

  • Martin KC, Michael D, Rose JC, Barad M, Casadio A, Zhu H, Kandel ER (1997) MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18:899–912

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Togashi H, Mori K, Ueno K, Ohashi S, Kojima T, Yoshioka M (2001) Evidence for involvement of central 5-HT(4) receptors in cholinergic function associated with cognitive processes: behavioral, electrophysiological, and neurochemical studies. J Pharmacol Exp Ther 296:676–682

    CAS  PubMed  Google Scholar 

  • Matsuno K, Senda T, Matsunaga K, Mita S, Kaneto H (1993) Similar ameliorating effects of benzomorphans and 5-HT2 antagonists on drug-induced impairment of passive avoidance response in mice: comparison with acetylcholinesterase inhibitors. Psychopharmacology 112:134–141

    CAS  PubMed  Google Scholar 

  • McLean JH, Smith A, Rogers S, Clarke K, Darby-King A, Harley CW (2009) A phosphodiesterase inhibitor, cilomilast, enhances cAMP activity to restore conditioned odor preference memory after serotonergic depletion in the neonate rat. Neurobiol Learn Mem 92:63–69. doi:10.1016/j.nlm.2009.02.003

    CAS  PubMed  Google Scholar 

  • McMahon LR, Cunningham KA (1999) Antagonism of 5-hydroxytryptamine(4) receptors attenuates hyperactivity induced by cocaine: putative role for 5-hydroxytryptamine(4) receptors in the nucleus accumbens shell. J Pharmacol Exp Ther 291:300–307

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Massey BW, Horiguchi M (2012) Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia. Curr Pharm Biotechnol 13:1572–1586

    CAS  PubMed  Google Scholar 

  • Meneses A (2004) Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav Brain Res 155:275–282. doi:10.1016/j.bbr.2004.04.026

    CAS  PubMed  Google Scholar 

  • Misane I, Ogren SO (2003) Selective 5-HT1A antagonists WAY 100635 and NAD-299 attenuate the impairment of passive avoidance caused by scopolamine in the rat. Neuropsychopharmacology 28:253–264. doi:10.1038/sj.npp.1300024

    CAS  PubMed  Google Scholar 

  • Mitchell ES, Neumaier JF (2005) 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 108:320–333. doi:10.1016/j.pharmthera.2005.05.001

    CAS  PubMed  Google Scholar 

  • Morales M, Wang SD, Diaz-Ruiz O, Jho DH (2004) Cannabinoid CB1 receptor and serotonin 3 receptor subunit A (5-HT3A) are co-expressed in GABA neurons in the rat telencephalon. J Comp Neurol 468:205–216. doi:10.1002/cne.10968

    CAS  PubMed  Google Scholar 

  • Mori K, Togashi H, Kojima T, Matsumoto M, Ohashi S, Ueno K, Yoshioka M (2001) Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo. Pharmacol Biochem Behav 69:367–372

    CAS  PubMed  Google Scholar 

  • Moser PC, Bergis OE, Jegham S et al (2002) SL65.0155, a novel 5-hydroxytryptamine(4) receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther 302:731–741. doi:10.1124/jpet.102.034249

    CAS  PubMed  Google Scholar 

  • Navailles S, De Deurwaerdere P, Porras G, Spampinato U (2004) In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 29:319–326. doi:10.1038/sj.npp.1300329

    CAS  PubMed  Google Scholar 

  • Neisewander JL, Acosta JI (2007) Stimulation of 5-HT2C receptors attenuates cue and cocaine-primed reinstatement of cocaine-seeking behavior in rats. Behav Pharmacol 18:791–800. doi:10.1097/FBP.0b013e3282f1c94b

    CAS  PubMed  Google Scholar 

  • Nic Dhonnchadha BA, Cunningham KA (2008) Serotonergic mechanisms in addiction-related memories. Behav Brain Res 195:39–53. doi:10.1016/j.bbr.2008.06.026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nic Dhonnchadha BA, Fox RG, Stutz SJ, Rice KC, Cunningham KA (2009) Blockade of the serotonin 5-HT2A receptor suppresses cue-evoked reinstatement of cocaine-seeking behavior in a rat self-administration model. Behav Neurosci 123:382–396. doi:10.1037/a0014592

    CAS  PubMed  Google Scholar 

  • Nitsch RM, Deng M, Growdon JH, Wurtman RJ (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem 271:4188–4194

    CAS  PubMed  Google Scholar 

  • Noristani HN, Verkhratsky A, Rodriguez JJ (2012) High tryptophan diet reduces CA1 intraneuronal beta-amyloid in the triple transgenic mouse model of Alzheimer’s disease. Aging Cell 11:810–822. doi:10.1111/j.1474-9726.2012.00845.x

    CAS  PubMed  Google Scholar 

  • O’Dell LE, Parsons LH (2004) Serotonin1B receptors in the ventral tegmental area modulate cocaine-induced increases in nucleus accumbens dopamine levels. J Pharmacol Exp Ther 311:711–719. doi:10.1124/jpet.104.069278

    PubMed  Google Scholar 

  • Ohno M, Watanabe S (1996) Blockade of 5-HT1A receptors compensates loss of hippocampal cholinergic neurotransmission involved in working memory of rats. Brain Res 736:180–188

    CAS  PubMed  Google Scholar 

  • Ohno M, Watanabe S (1997) Differential effects of 5-HT3 receptor antagonism on working memory failure due to deficiency of hippocampal cholinergic and glutamatergic transmission in rats. Brain Res 762:211–215

    CAS  PubMed  Google Scholar 

  • Pakaski M, Bjelik A, Hugyecz M, Kasa P, Janka Z, Kalman J (2005) Imipramine and citalopram facilitate amyloid precursor protein secretion in vitro. Neurochem Int 47:190–195. doi:10.1016/j.neuint.2005.03.004

    CAS  PubMed  Google Scholar 

  • Pandya AA, Yakel JL (2013) Activation of the alpha7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT(1)a receptor antagonist. Neuropharmacology 70:35–42. doi:10.1016/j.neuropharm.2013.01.004

    CAS  PubMed  Google Scholar 

  • Paris JM, Cunningham KA (1991) Serotonin 5-HT3 antagonists do not alter the discriminative stimulus properties of cocaine. Psychopharmacology 104:475–478

    CAS  PubMed  Google Scholar 

  • Park SM, Williams CL (2012) Contribution of serotonin type 3 receptors in the successful extinction of cued or contextual fear conditioned responses: interactions with GABAergic signaling. Rev Neurosci 23:555–569. doi:10.1515/revneuro-2012-0052

    PubMed  Google Scholar 

  • Parsons LH, Weiss F, Koob GF (1998) Serotonin1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18:10078–10089

    CAS  PubMed  Google Scholar 

  • Payton S, Cahill CM, Randall JD, Gullans SR, Rogers JT (2003) Drug discovery targeted to the Alzheimer’s APP mRNA 5′-untranslated region: the action of paroxetine and dimercaptopropanol. J Mol Neurosci 20:267–275. doi:10.1385/jmn:20:3:267

    CAS  PubMed  Google Scholar 

  • Pei Q, Zetterstrom T, Leslie RA, Grahame-Smith DG (1993) 5-HT3 receptor antagonists inhibit morphine-induced stimulation of mesolimbic dopamine release and function in the rat. Eur J Pharmacol 230:63–68

    CAS  PubMed  Google Scholar 

  • Perez-Garcia GS, Meneses A (2005) Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task. Behav Brain Res 163:136–140. doi:10.1016/j.bbr.2005.04.014

    CAS  PubMed  Google Scholar 

  • Perez-Garcia G, Meneses A (2008a) Ex vivo study of 5-HT(1A) and 5-HT(7) receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia. Behav Brain Res 195:139–146. doi:10.1016/j.bbr.2008.07.033

    CAS  PubMed  Google Scholar 

  • Perez-Garcia G, Meneses A (2008b) Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav Brain Res 195:17–29. doi:10.1016/j.bbr.2007.11.027

    CAS  PubMed  Google Scholar 

  • Pitsikas N, Rigamonti AE, Cella SG, Muller EE (2003) The 5-HT 1A receptor antagonist WAY 100635 improves rats performance in different models of amnesia evaluated by the object recognition task. Brain Res 983:215–222

    CAS  PubMed  Google Scholar 

  • Pitsikas N, Zisopoulou S, Pappas I, Sakellaridis N (2008) The selective 5-HT(6) receptor antagonist Ro 04-6790 attenuates psychotomimetic effects of the NMDA receptor antagonist MK-801. Behav Brain Res 188:304–309. doi:10.1016/j.bbr.2007.11.010

    CAS  PubMed  Google Scholar 

  • Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22:1406–1412. doi:10.1016/j.cellsig.2010.03.019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porras G, Di Matteo V, De Deurwaerdere P, Esposito E, Spampinato U (2002) Central serotonin4 receptors selectively regulate the impulse-dependent exocytosis of dopamine in the rat striatum: in vivo studies with morphine, amphetamine and cocaine. Neuropharmacology 43:1099–1109

    CAS  PubMed  Google Scholar 

  • Postina R (2012) Activation of alpha-secretase cleavage. J Neurochem 120(Suppl 1):46–54. doi:10.1111/j.1471-4159.2011.07459.x

    CAS  PubMed  Google Scholar 

  • Price TL, Darby-King A, Harley CW, McLean JH (1998) Serotonin plays a permissive role in conditioned olfactory learning induced by norepinephrine in the neonate rat. Behav Neurosci 112:1430–1437

    CAS  PubMed  Google Scholar 

  • Pytliak M, Vargova V, Mechirova V, Felsoci M (2011) Serotonin receptors - from molecular biology to clinical applications. Physiol Res 60:15–25

    CAS  PubMed  Google Scholar 

  • Raap DK, Evans S, Garcia F et al (1999) Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of Gz and Gi proteins. J Pharmacol Exp Ther 288:98–106

    CAS  PubMed  Google Scholar 

  • Rahimian R, Fakhfouri G, Ejtemaei Mehr S et al (2013) Tropisetron attenuates amyloid-beta-induced inflammatory and apoptotic responses in rats. Eur J Clin Invest 43:1039–1051. doi:10.1111/eci.12141

    CAS  PubMed  Google Scholar 

  • Richter-Levin G, Segal M (1989) Raphe cells grafted into the hippocampus can ameliorate spatial memory deficits in rats with combined serotonergic/cholinergic deficiencies. Brain Res 478:184–186

    CAS  PubMed  Google Scholar 

  • Robert SJ, Zugaza JL, Fischmeister R, Gardier AM, Lezoualc’h F (2001) The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J Biol Chem 276:44881–44888. doi:10.1074/jbc.M109008200

    CAS  PubMed  Google Scholar 

  • Robert S, Maillet M, Morel E, Launay JM, Fischmeister R, Mercken L, Lezoualc’h F (2005) Regulation of the amyloid precursor protein ectodomain shedding by the 5-HT4 receptor and Epac. FEBS Lett 579:1136–1142. doi:10.1016/j.febslet.2005.01.010

    CAS  PubMed  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Melendez RI, Berry N, Murphy JM, McBride WJ (2003) Effects of serotonin-3 receptor antagonists on the intracranial self-administration of ethanol within the ventral tegmental area of Wistar rats. Psychopharmacology 165:252–259. doi:10.1007/s00213-002-1300-2

    CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Noristani HN, Verkhratsky A (2012) The serotonergic system in ageing and Alzheimer’s disease. Prog Neurobiol 99:15–41. doi:10.1016/j.pneurobio.2012.06.010

    CAS  PubMed  Google Scholar 

  • Rozas C, Loyola S, Ugarte G et al (2012) Acutely applied MDMA enhances long-term potentiation in rat hippocampus involving D1/D5 and 5-HT2 receptors through a polysynaptic mechanism. Eur Neuropsychopharmacol 22:584–595. doi:10.1016/j.euroneuro.2011.11.010

    CAS  PubMed  Google Scholar 

  • Rutten K, Lieben C, Smits L, Blokland A (2007a) The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology 192:275–282. doi:10.1007/s00213-006-0697-4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A (2007b) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112. doi:10.1016/j.ejphar.2006.11.041

    CAS  PubMed  Google Scholar 

  • Sacktor TC, Kruger KE, Schwartz JH (1988) Activation of protein kinase C by serotonin: biochemical evidence that it participates in the mechanisms underlying facilitation in Aplysia. J Physiol (Paris) 83:224–231

    Google Scholar 

  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109. doi:10.1093/cercor/bhh070

    PubMed  Google Scholar 

  • Santana N, Mengod G, Artigas F (2009) Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19:849–860. doi:10.1093/cercor/bhn134

    PubMed  Google Scholar 

  • Schiapparelli L, Del Rio J, Frechilla D (2005) Serotonin 5-HT receptor blockade enhances Ca(2+)/calmodulin-dependent protein kinase II function and membrane expression of AMPA receptor subunits in the rat hippocampus: implications for memory formation. J Neurochem 94:884–895. doi:10.1111/j.1471-4159.2005.03193.x

    CAS  PubMed  Google Scholar 

  • Schilstrom B, Konradsson-Geuken A, Ivanov V et al (2011) Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-d-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat. Synapse 65:357–367. doi:10.1002/syn.20853

    PubMed  Google Scholar 

  • Segu L, Lecomte MJ, Wolff M et al (2010) Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice. PLoS ONE 5:e9529. doi:10.1371/journal.pone.0009529

    PubMed Central  PubMed  Google Scholar 

  • Siniscalchi A, Badini I, Beani L, Bianchi C (1999) 5-HT4 receptor modulation of acetylcholine outflow in guinea pig brain slices. NeuroReport 10:547–551

    CAS  PubMed  Google Scholar 

  • Soria-Fregozo C, Flores-Soto ME, Perez-Vega MI, Feria-Velasco A (2013) 5-HT denervation of the adult rat prefrontal cortex induces changes in the expression of alpha4 and alpha7 nicotinic acetylcholine receptor subtypes. Neurologia 28:212–218. doi:10.1016/j.nrl.2012.04.002

    CAS  PubMed  Google Scholar 

  • Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15:2445–2452

    CAS  PubMed  Google Scholar 

  • Takumi Y, Bergersen L, Landsend AS, Rinvik E, Ottersen OP (1998) Synaptic arrangement of glutamate receptors. Prog Brain Res 116:105–121

    CAS  PubMed  Google Scholar 

  • Terry AV Jr, Buccafusco JJ, Prendergast MA et al (1996) The 5-HT3 receptor antagonist, RS-56812, enhances delayed matching performance in monkeys. NeuroReport 8:49–54

    CAS  PubMed  Google Scholar 

  • Tottori K, Nakai M, Uwahodo Y et al (2002) Attenuation of scopolamine-induced and age-associated memory impairments by the sigma and 5-hydroxytryptamine(1A) receptor agonist OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quino linone monomethanesulfonate). J Pharmacol Exp Ther 301:249–257

    CAS  PubMed  Google Scholar 

  • Toyohara J, Hashimoto K (2010) alpha7 Nicotinic Receptor Agonists: Potential Therapeutic Drugs for Treatment of Cognitive Impairments in Schizophrenia and Alzheimer’s Disease. Open Med Chem J 4:37–56. doi:10.2174/1874104501004010037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upadhya SC, Smith TK, Hegde AN (2004) Ubiquitin-proteasome-mediated CREB repressor degradation during induction of long-term facilitation. J Neurochem 91:210–219. doi:10.1111/j.1471-4159.2004.02707.x

    CAS  PubMed  Google Scholar 

  • Upton N, Chuang TT, Hunter AJ, Virley DJ (2008) 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5:458–469. doi:10.1016/j.nurt.2008.05.008

    CAS  PubMed  Google Scholar 

  • Valentini V, Piras G, De Luca MA et al (2013) Evidence for a role of a dopamine/5-HT6 receptor interaction in cocaine reinforcement. Neuropharmacology 65:58–64. doi:10.1016/j.neuropharm.2012.08.025

    CAS  PubMed  Google Scholar 

  • van Donkelaar EL, Rutten K, Blokland A, Akkerman S, Steinbusch HW, Prickaerts J (2008) Phosphodiesterase 2 and 5 inhibition attenuates the object memory deficit induced by acute tryptophan depletion. Eur J Pharmacol 600:98–104. doi:10.1016/j.ejphar.2008.10.027

    PubMed  Google Scholar 

  • van Gaalen MM, Schetters D, Schoffelmeer AN, De Vries TJ (2010) 5-HT6 antagonism attenuates cue-induced relapse to cocaine seeking without affecting cocaine reinforcement. Int J Neuropsychopharmacol 13:961–965. doi:10.1017/S1461145710000428

    PubMed  Google Scholar 

  • Verdurand M, Berod A, Le Bars D, Zimmer L (2011) Effects of amyloid-beta peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus. Neurobiol Aging 32:103–114. doi:10.1016/j.neurobiolaging.2009.01.008

    CAS  PubMed  Google Scholar 

  • Waider J, Proft F, Langlhofer G, Asan E, Lesch KP, Gutknecht L (2013) GABA concentration and GABAergic neuron populations in limbic areas are differentially altered by brain serotonin deficiency in Tph2 knockout mice. Histochem Cell Biol 139:267–281. doi:10.1007/s00418-012-1029-x

    CAS  PubMed  Google Scholar 

  • Wang RY, Arvanov VL (1998) M100907, a highly selective 5-HT2A receptor antagonist and a potential atypical antipsychotic drug, facilitates induction of long-term potentiation in area CA1 of the rat hippocampal slice. Brain Res 779:309–313

    CAS  PubMed  Google Scholar 

  • West PJ, Marcy VR, Marino MJ, Schaffhauser H (2009) Activation of the 5-HT(6) receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience 164:692–701. doi:10.1016/j.neuroscience.2009.07.061

    CAS  PubMed  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225. doi:10.1146/annurev.ps.40.020189.001203

    CAS  PubMed  Google Scholar 

  • Woods S, Clarke NN, Layfield R, Fone KC (2012) 5-HT(6) receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br J Pharmacol 167:436–449. doi:10.1111/j.1476-5381.2012.02022.x

    CAS  PubMed  Google Scholar 

  • Woolley ML, Marsden CA, Sleight AJ, Fone KC (2003) Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04-6790. Psychopharmacology 170:358–367. doi:10.1007/s00213-003-1552-5

    CAS  PubMed  Google Scholar 

  • Woolley ML, Marsden CA, Fone KC (2004) 5-ht6 receptors. Curr Drug Targets CNS Neurol Disord 3:59–79

    CAS  PubMed  Google Scholar 

  • Yuan Q, Harley CW, Bruce JC, Darby-King A, McLean JH (2000) Isoproterenol increases CREB phosphorylation and olfactory nerve-evoked potentials in normal and 5-HT-depleted olfactory bulbs in rat pups only at doses that produce odor preference learning. Learn Mem 7:413–421

    CAS  PubMed  Google Scholar 

  • Yuan Q, Harley CW, McLean JH (2003) Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10:5–15. doi:10.1101/lm.54803

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rahimian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedabadi, M., Fakhfouri, G., Ramezani, V. et al. The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp Brain Res 232, 723–738 (2014). https://doi.org/10.1007/s00221-013-3818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3818-4

Keywords

Navigation