Skip to main content
Log in

Linear Inviscid Damping for the \(\beta \)-Plane Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the linear inviscid damping for the linearized \(\beta \)-plane equation around shear flows. We develop a new method to give the explicit decay rate of the velocity for a class of monotone shear flows. This method is based on the space-time estimate and the vector field method in the sprit of the wave equation. For general shear flows including the Sinus flow, we also prove the linear damping by establishing the limiting absorption principle, which is based on the compactness method introduced by Wei et al. (Ann PDE 5:3, 2019). The main difficulty is that the Rayleigh–Kuo equation has more singular points due to the Coriolis effects so that the compactness argument becomes more involved and delicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balmforth, N.J., Piccolo, C.: The onset of meandering in a barotropic jet. J. Fluid Mech. 449, 85–114 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. arXiv:1711.03668

  3. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239, 948–966 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Burns, A.G., Maslowe, S.A., Brown, S.N.: Barotropic instability of the Bickley jet at high Reynolds numbers. Stud. Appl. Math. 109, 279–296 (2002)

    Article  MathSciNet  Google Scholar 

  6. Case, K.M.: Stability of inviscid plane Couette flow. Phys. Fluids 3, 143–148 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dickinson, R.E., Clare, F.J.: Numerical study of the unstable modes of a hyperbolic-tangent barotropic shear flow. J. Atmos. Sci. 30, 1035–1049 (1973)

    Article  ADS  Google Scholar 

  8. Engevik, L.: A note on the barotropic instability of the Bickley jet. J. Fluid Mech. 499, 315–326 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Elgindi, T.M., Widmayer, K.: Long time stability for solutions of a \(\beta \)-plane equation. Commun. Pure Appl. Math. 70, 1425–1471 (2017)

    Article  MathSciNet  Google Scholar 

  10. Grenier, E., Nguyen, T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. arXiv:1804.08291v1

  11. Ionescu, A., Jia, H.: Inviscid damping near shear flows in a channel. arXiv:1808.04026

  12. Kuo, H.L.: Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122 (1949)

    Article  Google Scholar 

  13. Kuo, H.L.: Dynamics of quasi-geostrophic flows and instability theory. Adv. Appl. Mech. 13, 247–330 (1974)

    Article  Google Scholar 

  14. Landau, L.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946)

    MathSciNet  MATH  Google Scholar 

  15. Lin, Z., Yang, J., Zhu, H.: Barotropic instability of shear flows. arXiv:1801.00950v1

  16. Lin, Z., Zeng, C.: Inviscid dynamic structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097 (2011)

    Article  MathSciNet  Google Scholar 

  17. Maslowe, S.A.: Barotropic instability of the Bickley jet. J. Fluid Mech. 29, 417–426 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    Article  MathSciNet  Google Scholar 

  19. Orr, W.: Stability and instability of steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A: Math Astron. Phys. Sci. 27, 9–66 (1907)

    Google Scholar 

  20. Pedlosky, J.: Baroclinic instability in two layer systems. Tellus 15, 20–25 (1963)

    Article  ADS  Google Scholar 

  21. Pedlosky, J.: The stability of currents in the atmosphere and the ocean: Part I. J. Atmos. Sci. 21, 201–219 (1964)

    Article  ADS  Google Scholar 

  22. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  Google Scholar 

  23. Pusateri, F., Widmayer, K.: On the global stability of a \(\beta \)-plane equation. Anal. PDE 11, 1587–1624 (2018)

    Article  MathSciNet  Google Scholar 

  24. Rosencrans, S.I., Sattinger, D.H.: On the spectrum of an operator occurring in the theory of Hydrodynamics stability. J. Math. Phys. 45, 289–300 (1966)

    Article  MathSciNet  Google Scholar 

  25. Tung, K.K.: Barotropic instability of zonal flows. J. Atmos. Sci. 38, 308–321 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  26. Stepin, S.A.: Nonself-adjoint Friedrichs models in Hydrodynamics stability. Funct. Anal. Appl. 29, 91–101 (1995)

    Article  MathSciNet  Google Scholar 

  27. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of momotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687 (2018)

    Article  Google Scholar 

  28. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5, 3 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zettl, A.: Sturm–Liouville theory. In: Mathematical Surveys Monographs, vol. 121. American Mathematical Society (2005)

  31. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

H. Zhu would like to thank School of Mathematical Science at Peking University, where part of this work was done when he was a visitor. Z. Zhang is partially supported by NSF of China under Grant 11425103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Zhang, Z. & Zhu, H. Linear Inviscid Damping for the \(\beta \)-Plane Equation. Commun. Math. Phys. 375, 127–174 (2020). https://doi.org/10.1007/s00220-020-03727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03727-y

Navigation