Skip to main content
Log in

The Higher Rank q-Deformed Bannai-Ito and Askey-Wilson Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The q-deformed Bannai-Ito algebra was recently constructed in the threefold tensor product of the quantum superalgebra \(\mathfrak {osp}_q(1\vert 2)\). It turned out to be isomorphic to the Askey-Wilson algebra. In the present paper these results will be extended to higher rank. The rank \(n-2\)q-Bannai-Ito algebra \(\mathcal {A}_n^q\), which by the established isomorphism also yields a higher rank version of the Askey-Wilson algebra, is constructed in the n-fold tensor product of \(\mathfrak {osp}_q(1\vert 2)\). An explicit realization in terms of q-shift operators and reflections is proposed, which will be called the \(\mathbb {Z}_2^n\)q-Dirac–Dunkl model. The algebra \(\mathcal {A}_n^q\) is shown to arise as the symmetry algebra of the constructed \(\mathbb {Z}_2^n\)q-Dirac–Dunkl operator and to act irreducibly on modules of its polynomial null-solutions. An explicit basis for these modules is obtained using a q-deformed \(\mathbf {CK}\)-extension and Fischer decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia Math. Appl., vol. 71. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Bannai, E., Ito, T.: Algebraic Combinatorics. I. Association Schemes. The Benjamin/Cummings Publishing Co. Inc., Menlo Park (1984)

    MATH  Google Scholar 

  3. Baseilhac, P.: An integrable structure related with tridiagonal algebras. Nuclear Phys. B 705(3), 605–619 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Baseilhac, P., Genest, V.X., Vinet, L., Zhedanov, A.: An embedding of the Bannai-Ito algebra in \(\cal{U}(\mathfrak{osp}(1\vert 2))\) and \(-1\) polynomials. Lett. Math. Phys. 108(7), 1623–1634 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Baseilhac, P., Koizumi, K.: A new (in)finite dimensional algebra for quantum integrable models. Nuclear Phys. B 720(3), 325–347 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Baseilhac, P., Martin, X.: A bispectral \(q\)-hypergeometric basis for a class of quantum integrable models. J. Math. Phys. 59, 011704 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Brown, G.M.F.: Totally bipartite/abipartite Leonard pairs and Leonard triples of Bannai/Ito type. Electron. J. Linear Algebra 26, 258–299 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. De Bie, H., De Clercq, H.: The \(q\)-Bannai-Ito algebra and multivariate \((-q)\)-Racah and Bannai-Ito polynomials. arXiv:1902.07883

  9. De Bie, H., Genest, V.X., Vinet, L.: A Dirac-Dunkl equation on \(S^2\) and the Bannai-Ito algebra. Commun. Math. Phys. 344, 447–464 (2016)

    Article  ADS  Google Scholar 

  10. De Bie, H., Genest, V.X., Vinet, L.: The \(\mathbb{Z}_2^n\) Dirac-Dunkl operator and a higher rank Bannai-Ito algebra. Adv. Math. 303, 390–414 (2016)

    Article  MathSciNet  Google Scholar 

  11. De Bie, H., Genest, V.X., van de Vijver, W., Vinet, L.: A higher rank Racah algebra and the \(\mathbb{Z}_2^n\) Laplace-Dunkl operator. J. Phys. A Math. Theor. 51, 025203 (2018)

    Article  ADS  Google Scholar 

  12. De Bie, H., Genest, V.X., Lemay, J.-M., Vinet, L.: A superintegrable model with reflections on \(S^{n-1}\) and the higher rank Bannai-Ito algebra. J. Phys. A Math. Theor. 50, 195202 (2017)

    Article  ADS  Google Scholar 

  13. De Clercq, H.: Higher rank relations for the Askey-Wilson and \(q\)-Bannai-Ito algebra. In preparation

  14. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  MathSciNet  Google Scholar 

  15. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  16. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal \(q\)-Racah polynomials. Ramanujan J. 13, 389–405 (2007)

    Article  MathSciNet  Google Scholar 

  17. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal Askey-Wilson polynomials. In: Ismail, M.E., Koelink, E. (eds.) Theory and applications of special functions. Developments in Mathematics, vol. 13, pp. 209–219. Springer, New York (2005)

    Chapter  Google Scholar 

  18. Genest, V.X., Iliev, P., Vinet, L.: Coupling coefficients of \(\mathfrak{su}_q(1,1)\) and multivariate \(q\)-Racah polynomials. Nuclear Phys. B 927, 97–123 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Genest, V.X., Vinet, L., Zhedanov, A.: A Laplace–Dunkl equation on \(S^2\) and the Bannai-Ito algebra. Commun. Math. Phys. 336(1), 243–259 (2015)

    Article  ADS  Google Scholar 

  20. Genest, V.X., Vinet, L., Zhedanov, A.: The quantum superalgebra \(\mathfrak{osp}_q(1|2)\) and a \(q\)-generalization of the Bannai-Ito polynomials. Commun. Math. Phys. 344, 465–481 (2016)

    Article  ADS  Google Scholar 

  21. Genest, V.X., Vinet, L., Zhedanov, A.: The non-symmetric Wilson polynomials are the Bannai-Ito polynomials. Proc. Am. Math. Soc. 144(12), 5217–5226 (2016)

    Article  MathSciNet  Google Scholar 

  22. Genest, V.X., Vinet, L., Zhedanov, A.: The equitable presentation of \(\mathfrak{osp}_q(1|2)\) and a \(q\)-analog of the Bannai-Ito algebra. Lett. Math. Phys. 105(12), 1725–1734 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Granovskii, YaI, Zhedanov, A.: Nature of the symmetry group of the \(6j\)-symbol. Sov. Phys. JETP 67, 1982–1985 (1988)

    MathSciNet  Google Scholar 

  24. Granovskii, Ya.I., Zhedanov, A.: Hidden symmetry of the Racah and Clebsch–Gordan problem for the quantum algebra \(sl_q(2)\). J. Group Theor. Phys. 1: 161–171 (1993)

  25. Hou, B., Wang, M., Gao, S.: The classification of finite-dimensional irreducible modules of Bannai/Ito algebra. Commun. Algebra 44, 919–943 (2016)

    Article  MathSciNet  Google Scholar 

  26. Huang, H.: An embedding of the Universal Askey-Wilson algebra into \(U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)\). Nuclear Phys. B 922, 401–434 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Iliev, P.: Bispectral commuting difference operators for multivariable Askey–Wilson polynomials. Trans. Am. Math. Soc. 363(3), 1577–1598 (2011)

    Article  MathSciNet  Google Scholar 

  28. Iliev, P.: The generic quantum superintegrable system on the sphere and Racah operators. Lett. Math. Phys. 107(11), 2029–2045 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Iliev, P.: Symmetry algebra for the generic superintegrable system on the sphere. J. High Energy Phys. 44(2), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics. Springer, New York (1995)

    Google Scholar 

  31. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)

    Book  Google Scholar 

  32. Koornwinder, T.H.: The relationship between Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. SIGMA 3, Paper 063 (2007)

  33. Koornwinder, T.H.: Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra. SIGMA 4, Paper 052 (2008)

  34. Kulish, P.P.: Universal R-matrix of the quantum superalgebra \(\mathfrak{osp}(1\vert 2)\). Lett. Math. Phys. 18(2), 143–149 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lesniewski, A.: A remark on the Casimir elements of the Lie superalgebras and quantized Lie superalgebras. J. Math. Phys. 36(3), 1457–1561 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  36. Musso, F., Petrera, M., Ragnisco, O., Satta, G.: Gaudin models with \(\cal{U}_q(\mathfrak{osp}(1\vert 2))\) symmetry. Nuclear Phys. B 716(3), 543–555 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Post, S., Walter, A.: A higher rank extension of the Askey–Wilson algebra. arXiv:1705.01860v2, (2017)

  38. Terwilliger, P.: Two relations that generalize the \(q\)-Serre and the Dolan–Grady relations. In: Proceedings of Nagoya 1999 Workshop on Physics and Combinatorics, pp. 377–398. World Scientific Publishing Co., Inc., River Edge (2000)

  39. Terwilliger, P.: The universal Askey–Wilson algebra. SIGMA 7, Paper 069 (2011)

  40. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32, 2337–2342 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. Tsujimoto, S., Vinet, L., Zhedanov, A.: Dunkl shift operators and Bannai-Ito polynomials. Adv. Math. 229, 2123–2158 (2012)

    Article  MathSciNet  Google Scholar 

  42. Zhedanov, A.: “Hidden symmetry” of the Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation Flanders (FWO) under Grant EOS 30889451 and G.0116.13N. We wish to thank Toon Baeyens for writing Java code that was used to verify some of the formulae in the paper. We would also like to thank the referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik De Bie.

Additional information

Communicated by P. Zinn-Justin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expressions in the fourfold tensor product

Appendix A: Expressions in the fourfold tensor product

In this appendix we will give the explicit expression for the element \(\Gamma _A^q \in \mathfrak {osp}_q(1\vert 2)^{\otimes 4}\) for some of the non-trivial sets \(A\subset \{1,2,3,4\}\). These can be obtained using the definition of the coproduct \(\Delta \) and the coaction \(\tau \) as in (6), (8) and (17).

$$\begin{aligned} \Gamma _{\{1,3\}}^q =&\frac{-q^{1/2}}{q - q^{-1}} K^{2} P \otimes 1 \otimes K^{2} P \otimes 1 - (q-q^{-1}) A_- A_+ P \otimes A_+ K \otimes A_- K \otimes 1 \\&+ A_- A_+ P \otimes 1 \otimes K^{2} P \otimes 1 -q^{1/2} A_- K^{-1} P \otimes K^{-2} P \otimes A_+ K \otimes 1 \\&- q^{-1/2} A_- K^{-1} P \otimes A_+ K^{-1} P \otimes K^{-2} P \otimes 1\\&+ q^{-1/2} A_+ K^{-1} P \otimes K^{2} P \otimes A_- K \otimes 1 + q^{-1/2} A_- K^{-1} P \\&\otimes A_+ K^{-1} P \otimes K^{2} P \otimes 1 \\&- (q-q^{-1}) A_- K^{-1} P \otimes A_+ K^{-1} P \otimes A_- A_+ P \otimes 1 \\&+ \frac{q^{-1/2}}{q-q^{-1}} K^{-2} P \otimes 1 \otimes K^{-2} P \otimes 1 + K^{-2} P \otimes 1 \otimes A_- A_+ P \otimes 1 \\&- (q-q^{-1}) A_- K^{-1} P \otimes A_+^{2} P \otimes A_- K \otimes 1 \\&+ q^{1/2} K^{2} P \otimes A_+ K \otimes A_- K \otimes 1- q^{1/2} K^{-2}P \otimes A_+ K \otimes A_- K \otimes 1.\\ \Gamma _{\{1,4\}}^q =&\frac{q^{-1/2}}{q-q^{-1}} K^{-2} P \otimes 1 \otimes 1 \otimes K^{-2} P - \frac{{q}^{1/2}}{q-q^{-1}} K^{2} P \otimes 1 \otimes 1 \otimes K^{2} P\\&- (q-q^{-1}) A_- A_+ P \otimes A_+ K \otimes K^{2} P \otimes A_- K \\&+ q^{1/2} K^{2} P \otimes A_+ K \otimes K^{2} P \otimes A_- K \\&-q^{1/2} A_- K^{-1} P \otimes K^{-2} P \otimes K^{-2} P \otimes A_+ K \\ {}&- (q-q^{-1}) A_- K^{-1} P \otimes K^{-2} P \otimes A_+ K^{-1}P \otimes A_- A_+ P \\&-q^{1/2} K^{-2} P \otimes A_+ K \otimes K^{2} P \otimes A_- K + A_- A_+ P \otimes 1 \otimes 1 \otimes K^{2} P \\&-(q-q^{-1}) A_- K^{-1} P \otimes A_+ K^{-1} P \otimes 1 \otimes A_- A_+ P\\ {}&- (q-q^{-1}) A_- K^{-1} P \otimes A_+^{2} P \otimes K^{2} P \otimes A_- K\\&- (q-q^{-1}) A_- K^{-1} P \otimes K^{-2} P \otimes A_+^{2} P \otimes A_- K \\&- (q-q^{-1}) A_- A_+ P \otimes 1 \otimes A_+ K \otimes A_- K \\&- q^{-1/2} A_- K^{-1} P \otimes A_+ K^{-1} P \otimes 1 \otimes K^{-2} P+ q^{-1/2} A_- K^{-1} P \\&\otimes A_+ K^{-1} P \otimes 1 \otimes K^{2} P\\ {}&- q^{-1/2} A_- K^{-1} P \otimes K^{-2} P \otimes A_+ K^{-1} P \otimes K^{-2} P\\ {}&+ q^{-1/2}A_+ K^{-1} P \otimes K^{2} P \otimes K^{2} P \otimes A_- K + K^{-2} P \otimes 1 \otimes 1 \otimes A_- A_+ P \\&+ (q-q^{-1})(q^{1/2}-q^{-1/2}) A_- K^{-1} P \otimes A_+ K^{-1} P \otimes A_+ K \otimes A_- K \\&+ q^{-1/2} A_- K^{-1} P \otimes K^{-2} P \otimes A_+ K^{-1} P \otimes K^{2} P \\&+ q^{1/2} K^{2} P \otimes 1 \otimes A_+ K \otimes A_- K - q^{1/2} K^{-2} P \otimes 1 \otimes A_+ K \otimes A_- K. \end{aligned}$$
$$\begin{aligned} \Gamma _{\{1,2,4\}}^q =&-q^{-1/2} A_- K^{-1} P \otimes 1 \otimes A_+ K^{-1} P \otimes K^{-2} P \\&+ q^{1/2}(q-q^{-1}) A_- K^{-1} P \otimes A_+ K \otimes A_+ K \otimes A_- K \\&-q^{1/2} A_- K^{-1} P \otimes A_+ K \otimes 1 \otimes K^{2} P-q^{1/2} K^{-2} P \\&\otimes A_- K^{-1} P \otimes K^{-2} P \otimes A_+ K \\&+ q^{1/2} K^{-2} P \otimes A_- K^{-1} P \otimes A_+ K^{-1} P \otimes K^{2} P\\ {}&-q^{1/2} A_- K^{-1} P \otimes 1 \otimes K^{-2} P \otimes A_+ K \\&- (q-q^{-1}) K^{-2} P \otimes A_- A_+ P \otimes A_+ K \otimes A_- K \\ {}&- (q-q^{-1})A_- K^{-1} P \otimes 1 \otimes A_+ K^{-1} P \otimes A_- A_+ P \\&+ K^{-2} P \otimes K^{-2} P \otimes 1 \otimes A_- A_+ P - \frac{q^{1/2}}{q-q^{-1}} K^{2} P \otimes K^{2} P \otimes 1 \otimes K^{2} P\quad \\&+ q^{-1/2} A_- K^{-1} P \otimes 1 \otimes A_+ K^{-1} P \otimes K^{2} P \\&- (q-q^{-1}) A_- K^{-1} P \otimes 1 \otimes A_+^{2} P \otimes A_- K \\&- (q-q^{-1}) K^{-2} P \otimes A_- K^{-1} P \otimes A_+ K^{-1} P \otimes A_- A_+ P \\&- q^{-1/2} K^{-2} P \otimes A_- K^{-1} P \otimes A_+ K^{-1} P \otimes K^{-2} P\\&+ q^{-1/2} K^{-2} P \otimes A_+ K^{-1} P \otimes K^{2} P \otimes A_- K \\&+ \frac{q^{-1/2}}{q-q^{-1}} K^{-2} P \otimes K^{-2} P \otimes 1 \otimes K^{-2} P \\&-q^{1/2} K^{-2} P \otimes K^{-2} P \otimes A_+ K \otimes A_- K \\&+ q^{1/2} K^{2} P \otimes K^{2} P \otimes A_+ K \otimes A_- K + A_- A_+ P \otimes K^{2} P \otimes 1 \otimes K^{2} P \\&- q^{-1/2}(q-q^{-1}) A_+ K^{-1} P \otimes A_- K \otimes A_+ K \otimes A_- K \\&- (q-q^{-1}) K^{-2} P \otimes A_- K^{-1} P \otimes A_+^{2} P \otimes A_- K \\ {}&- (q-q^{-1}) A_- A_+ P \otimes K^{2} P \otimes A_+ K \otimes A_- K\\&+ K^{-2} P \otimes A_- A_+ P \otimes 1 \otimes K^{2} P + q^{-1/2} A_+ K^{-1} P \otimes 1 \otimes K^{2} P \otimes A_- K \\&+ q^{-1/2}A_+ K^{-1} P \otimes A_- K \otimes 1 \otimes K^{2} P. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bie, H., De Clercq, H. & van de Vijver, W. The Higher Rank q-Deformed Bannai-Ito and Askey-Wilson Algebra. Commun. Math. Phys. 374, 277–316 (2020). https://doi.org/10.1007/s00220-019-03562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03562-w

Navigation