Skip to main content
Log in

Quantum Lax Pairs via Dunkl and Cherednik Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a direct link between Dunkl operators and quantum Lax matrices \({{\mathcal{L}}}\) for the Calogero–Moser systems associated to an arbitrary Weyl group W (or an arbitrary finite reflection group in the rational case). This interpretation also provides a companion matrix \({{\mathcal{A}}}\) so that \({{\mathcal{L}}, {\mathcal{A}}}\) form a quantum Lax pair. Moreover, such an \({{\mathcal{A}}}\) can be associated to any of the higher commuting quantum Hamiltonians of the system, so we obtain a family of quantum Lax pairs. These Lax pairs can be of various sizes, matching the sizes of orbits in the reflection representation of W, and in the elliptic case they contain a spectral parameter. This way we reproduce universal classical Lax pairs by D’Hoker–Phong and Bordner–Corrigan–Sasaki, and complement them with quantum Lax pairs in all cases (including the elliptic case, where they were not previously known). The same method, with the Dunkl operators replaced by the Cherednik operators, produces quantum Lax pairs for the generalised Ruijsenaars systems for arbitrary root systems. As one of the main applications, we calculate a Lax matrix for the elliptic BCn case with nine coupling constants (van Diejen system), thus providing an answer to a long-standing open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard D., Gaudin M., Haldane F.D.M., Pasquier V.: Yang–Baxter equation in spin chains with long range interactions. J. Phys. A: Math. Gen. 26, 5219–5236 (1993)

    Article  ADS  MATH  Google Scholar 

  2. Bordner A.J., Corrigan E., Sasaki R.: Generalised Calogero–Moser models and universal Lax pair operators. Prog. Theor. Phys. 102(3), 499–529 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bordner A.J., Manton N.S., Sasaki R.: Calogero–Moser models. V. Supersymmetry and quantum Lax pair. Prog. Theor. Phys. 103(3), 463–487 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brink L., Hansson T.H., Vasiliev M.A.: Explicit solution to the N-body Calogero problem. Phys. Lett. B 286, 109–111 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bruschi M., Calogero F.: The Lax representation for an integrable class of relativistic dynamical systems. Commun. Math. Phys. 109, 481–492 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Buchstaber V., Felder G., Veselov A.: Elliptic Dunkl operators, root systems, and functional equations. Duke Math. J. 76(3), 885–911 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Zvi, D., Nevins, T.: From solitons to many-body problems. Special issue in honor of Fedor Bogomolov. Pure Appl. Math. Q. 4(2), 319–361 (2008)

  8. Calogero F.: Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  9. Calogero F.: Exactly solvable one-dimensional many-body systems. Lett. Nuovo Cimento 13, 411–415 (1975)

    Article  MathSciNet  Google Scholar 

  10. Chalykh O., Silantyev A.: KP hierarchy for the cyclic quiver. J. Math. Phys. 58, 071702 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cherednik I.: A unification of Knizhnik–Zamolodchikov equations and Dunkl operators via affine Hecke algebras. Invent. Math. 106, 411–432 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cherednik I.: Quantum Knizhnik–Zamolodchikov equations and affine root systems. Commun. Math. Phys. 150, 109–136 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cherednik I.: Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald’s operators. IMRN 9, 171–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cherednik I.: Double Affine Hecke Algebras. LMS Lecture Note Series, vol. 319. Cambridge University Press, Cambridge (2005)

  15. Cherednik I.: Elliptic quantum many-body problem and double affine Knizhnik–Zamolodchikov equation. Commun. Math. Phys. 169, 441–461 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cherednik I.: Difference-elliptic operators and root systems. IMRN 1, 43–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Hoker E., Phong D.H.: Calogero–Moser Lax pairs with spectral parameter for general Lie algebras. Nucl. Phys. B 530, 537–610 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dunkl C.F.: Differential–difference operators associated to reflection groups. Trans. Am. Math. Soc. 311(1), 167–183 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dunkl C.F., Opdam E.M.: Dunkl operators for complex reflection groups. Proc. Lond. Math. Soc. (3) 86(1), 70–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Etingof P.: Calogero–Moser Systems and Representation Theory. Zürich Lectures in Advanced Mathematics. Eur. Math. Soc., Zürich (2007)

    Book  Google Scholar 

  21. Etingof P., Felder G., Ma X., Veselov A.: On elliptic Calogero–Moser systems for complex crystallographic reflection groups. J. Algebra 329, 107–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Etingof P., Ginzburg V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Etingof P., Ma X.: On elliptic Dunkl operators. Special volume in honor of Melvin Hochster. Mich. Math. J. 57, 293–304 (2008)

    Article  Google Scholar 

  24. Fehér L., Klimcík C.: Poisson–Lie generalization of the Kazhdan–Kostant–Sternberg reduction. Lett. Math. Phys. 87, 125–138 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Fehér, L., Marshall, I.: Global description of action-angle duality for a Poisson–Lie deformation of the trigonometric BC n Sutherland system. arXiv:1710.08760[math-ph]

  26. Fehér L., Pusztai B.G.: A class of Calogero type reductions of free motion on a simple Lie group. Lett. Math. Phys. 79, 263–277 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Feigin M.: Generalized Calogero–Moser systems from rational Cherednik algebras. Sel. Math. 218(1), 253–281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feigin M., Silantyev A.: Generalized Macdonald–Ruijsenaars systems. Adv. Math. 250, 144–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Flashka H.: On the Toda lattice. Inverse scattering solutions. Prog. Theor. Phys. 51(3), 703–716 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  30. Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. In: Moscow Seminar in Mathematical Physics, AMS Translation Series 2, vol. 191, pp. 67–86 (1999)

  31. Geck M., Pfeiffer G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras. London Mathematical Society Monographs (N.S), vol. 21. OUP, New York (2000)

    MATH  Google Scholar 

  32. Görbe T., Pusztai B.G.: Lax representation of the hyperbolic van Diejen dynamics with two coupling parameters. Commun. Math. Phys. 354, 829–864 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gorsky A., Nekrasov N.: Relativistic Calogero–Moser model as gauged WZW theory. Nucl. Phys. B 436, 582–608 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Hasegawa K.: Ruijsenaars Commuting Difference Operators as Commuting Transfer Matrices. Commun. Math. Phys. 187, 289–325 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Heckman, G.J.: A remark on the Dunkl differential–difference operators. In: Harmonic Analysis on Reductive Groups. Progress in Mathematics, vol. 101, pp. 181–193. Birkhauser (1991)

  36. Heckman G.J.: An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math. 103, 341–350 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hurtubise J.C., Markman E.: Calogero–Moser systems and Hitchin systems. Commun. Math. Phys. 223, 533–552 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Inozemtsev V.: Lax representation with spectral parameter on a torus for integrable particle systems. Lett. Math. Phys. 17(1), 11–17 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kazhdan D., Kostant B., Sternberg S.: Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. 31, 481–507 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Khastgir S.P., Pocklington A.J., Sasaki R.: Quantum Calogero–Moser models: integrability for all root systems. J. Phys. A: Math. Gen. 33, 9033–9064 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kirillov A.A. Jr: Lectures on affine Hecke algebras and Macdonald’s conjectures. Bull. Am. Math. Soc. (N.S.) 34(3), 251–292 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Komori Y., Hikami K.: Quantum integrability of the generalized elliptic Ruijsenaars models. J. Phys. A: Math. Gen. 30, 4341–4364 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Komori Y., Hikami K.: Affine R-matrix and the generalized elliptic Ruijsenaars models. Lett. Math. Phys. 43, 335–346 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type BC. In: Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, vol. 138, pp. 189–204. Amer. Math. Soc., Providence (1992)

  45. Koroteev, P., Pushkar, P., Smirnov, A., Zeitlin, A.: Quantum K-theory of quiver varieties and many-body systems. arXiv:1705.10419 [math.AG]

  46. Krichever I.M.: Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles. Funct. Anal. Appl. 14(4), 282–290 (1980)

    Article  MATH  Google Scholar 

  47. Krichever I.: Vector bundles and Lax equations on algebraic curves. Commun. Math. Phys. 229(2), 229–269 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Krichever, I.: Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations. In: Calogero–Moser–Sutherland Models (Montréal, QC, 1997), pp. 249–271, CRM Series in Mathematical Physics. Springer (2000)

  49. Krichever I., Sheinman O.: Lax operator algebras. Funct. Anal. Appl. 41(4), 284–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Krichever I., Zabrodin A.: Spin generalization of the Ruijsenaars–Schneider model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra. Russ. Math. Surv. 50(6), 1101–1150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  52. Letzter G., Stokman J.: Macdonald difference operators and Harish-Chandra series. Proc. London Math. Soc. (3) 97, 60–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Levin A.M., Olshanetsky M.A., Smirnov A.V., Zotov A.V.: Calogero–Moser systems for simple Lie groups and characteristic classes of bundles. J. Geom. Phys. 62, 1810–1850 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Macdonald, I.G.: Orthogonal polynomials associated with root systems. Preprint (1988). Reproduced in: Sém. Lothar. Combin. 45, Art. B45a (2000/01)

  55. Macdonald I.G.: Affine Hecke Algebras and Orthogonal Polynomials. CUP, Cambridge (2003)

    Book  MATH  Google Scholar 

  56. Moser J.: Three integrable Hamiltonian systems connected with isospectral deformation. Adv. Math. 16(2), 197–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Nazarov, M.L., Sklyanin, E.K.: Cherednik operators and Ruijsenaars–Schneider model at infinity. arXiv:1703.02794 [nlin.SI]

  58. Nekrasov N.: Holomorphic bundles and many-body systems. Commun. Math. Phys. 180, 587–604 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Noumi, M.: Macdonald–Koornwinder polynomials and affine Hecke rings (in Japanese). In: Various Aspects of Hypergeometric Functions (Kyoto, 1994), Kokyuroku, vol. 919, pp. 44–55. Kyoto University, Kyoto (1995)

  60. Oblomkov A.: Double affine Hecke algebras and Calogero–Moser spaces. Represent. Theory 8, 243–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Olshanetsky M.A., Perelomov A.M.: Classical integrable systems related to Lie algebras. Phys. Rep. 71(5), 313–400 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  62. Olshanetsky M.A., Perelomov A.M.: Quantum integrable systems related to Lie algebras. Phys. Rep. 94(6), 313–404 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  63. Opdam E.M.: Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compos. Math. 85(3), 333–373 (1993)

    MathSciNet  MATH  Google Scholar 

  64. Perelomov A.M.: Completely integrable classical systems connected with semisimple Lie algebras. III. Lett. Math. Phys. 1(6), 531–534 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  65. Polychronakos A.P.: Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69, 703–705 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Pusztai B.G.: The hyperbolic BC n Sutherland and the rational BC n Ruijsenaars–Schneider–van Diejen models: Lax matrices and duality. Nucl. Phys. B. 856, 528–551 (2012)

    Article  ADS  MATH  Google Scholar 

  67. Rains, E.: Elliptic double affine Hecke algebras. arXiv:1709.02989v2 [math.AG]

  68. Rains E., Ruijsenaars S.: Difference operators of Sklyanin and van Diejen type. Commun. Math. Phys. 320(3), 851–889 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Ruijsenaars S.N.M.: Complete integrability of relativistic Calogero–Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems I. The pure soliton case. Commun. Math. Phys. 115, 127–165 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Ruijsenaars S.N.M., Schneider H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 146, 1–34 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  72. Sahi S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. (2) 150, 267–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sergeev A.N., Veselov A.P.: Deformed quantum Calogero–Moser problems and Lie superalgebras. Commun. Math. Phys. 245(2), 249–278 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Sergeev A.N., Veselov A.P.: Deformed Macdonald–Ruijsenaars operators and super Macdonald polynomials. Commun. Math. Phys. 288(2), 653–675 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Sergeev A.N., Veselov A.P.: Dunkl operators at infinity and Calogero–Moser systems. IMRN 21, 10959–10986 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. Shibukawa Y., Ueno K.: Completely \({\mathbb{Z}}\) symmetric R matrix. Lett. Math. Phys. 25(3), 239–248 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Stokman J.: Koorwinder polynomials and affine Hecke algebras. IMRN 19, 1005–1042 (2000)

    Article  MATH  Google Scholar 

  78. Shastry B.S., Sutherland B.: Super Lax pairs and infinite symmetries in the \({1/r^2}\) system. Phys. Rev. Lett. 70, 4029–4033 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Ujino H., Hikami K., Wadati M.: Integrability of the quantum Calogero–Moser model. J. Phys. Soc. Jpn. 61(10), 3425–3427 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Diejen J.F.: Integrability of difference Calogero–Moser systems. J. Math. Phys 35(6), 2983–3004 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Diejen J.F.: Commuting difference operators with polynomial eigenfunctions. Compos. Math. 95, 183–233 (1995)

    MathSciNet  MATH  Google Scholar 

  82. Diejen J.F., Ito M.: Difference equations and Pieri formulas for G 2 type Macdonald polynomials and integrability. Lett. Math. Phys. 86, 229–248 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Diejen J.F., Emsiz E.: A generalized Macdonald operator. IMRN 15, 3560–3574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Yu. Berest, F. Calogero, P. Etingof, L. Fehér, M. Feigin, T. Görbe, A. N. Kirillov, M. Nazarov, V. Pasquier, E. Rains, S. Ruijsenaars, E. Sklyanin, A. Silantyev, A. Veselov for stimulating discussions and useful comments. I am especially grateful to Pavel Etingof for his help with proving Proposition 5.1. This work was partially supported by EPSRC under Grant EP/K004999/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Chalykh.

Additional information

Communicated by A. Borodin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalykh, O. Quantum Lax Pairs via Dunkl and Cherednik Operators. Commun. Math. Phys. 369, 261–316 (2019). https://doi.org/10.1007/s00220-019-03289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03289-8

Navigation