Skip to main content

Advertisement

Log in

Fluorescent and mass spectrometric evaluation of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ru(bpy)3@SiO2-COOH and Ru(bpy)3@SiO2@CD47-peptide nanoparticles (NPs) with fluorescent and mass spectrometric properties were designed and synthesized as the models of drug-nanocarriers. Their phagocytic internalization could be quantitatively measured using more sensitive inductively coupled plasma mass spectrometry (ICPMS) (102Ru) versus traditional laser confocal scanning microscope (λex/em = 458/600 nm) for the first time. Modification of a self-signal trigging CD47-peptide on the NPs’ surface decreased internalization by 10 times, (2.79 ± 0.21) × 104 Ru(bpy)3@SiO2-COOH and (0.28 ± 0.04) × 104 Ru(bpy)3@SiO2@CD47-peptide NPs per RAW264.7 macrophage (n = 5). The alkynyl-linked CD47-peptide allowed us to quantify the number (2412 ± 250) of CD47-peptide modified on the NP and the total content (5.14 ± 0.25 amol) of signal regulatory protein α (SIRPα) on the macrophage by measuring the clickable tagged Eu using ICPMS. Furthermore, the interaction between CD47-peptide and SIRPα as well as the changes of the remaining free SIRPα during the internalization process of Ru(bpy)3@SiO2@CD47-peptide NPs were quantitatively evaluated, providing direct experimental evidence of the longspeculated crucial CD47-SIRPα interaction for drug-nanocarriers to escape internalization by phagocytic cells. Remarkable difference in the internalization ratio of 12.3 ± 4.8 of Ru(bpy)3@SiO2-COOH NPs and 4.3 ± 0.5 Ru(bpy)3@SiO2@CD47-peptide NPs with and without the protein corona indicated that CD47-peptide still worked when the protein corona formed. Not limited to the evaluation of the NPs studied here, such a fluorescent and mass spectrometric approach is very much expected to apply to the assessment of other drug-nanocarriers designed by chemists and before their medical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  CAS  PubMed  Google Scholar 

  2. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.

    Article  CAS  PubMed  Google Scholar 

  3. Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev. 2015;115:3388–432.

    Article  CAS  PubMed  Google Scholar 

  4. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014–25.

    Article  CAS  Google Scholar 

  5. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–81.

    Article  CAS  PubMed  Google Scholar 

  6. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104:2050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41:2780–99.

    Article  CAS  PubMed  Google Scholar 

  9. Santos SN, Reis SRR, Pires LP, Helal-Neto E, Sancenόn F, Barja-Fidalgo TC, et al. Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system. Microporous Mesoporous Mater. 2017;251:181–9.

    Article  CAS  Google Scholar 

  10. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem. 2010;21:2250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walkey CD, Olsen JB, Guo H, Emili A. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134:2139–47.

    Article  CAS  PubMed  Google Scholar 

  12. Howard JC, Florentinus-Mefailoski A, Bowden P, Trimbleb W, Grinstein S, Marshall JG. OxLDL receptor chromatography from live human U937 cells identifies SYK(L) that regulates phagocytosis of oxLDL. Anal Biochem. 2016;513:7–20.

    Article  CAS  PubMed  Google Scholar 

  13. Vance DT, Dufresne J, Florentinus-Mefailoski A, Tucholskaa M, Trimble W, Grinstein S, et al. A phagocytosis assay for oxidized low-density lipoprotein versus immunoglobulin G-coated microbeads in human U937 macrophages. Anal Biochem. 2016;500:24–34.

    Article  CAS  PubMed  Google Scholar 

  14. Fang RH, Jiang Y, Fang JC, Zhang LF. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017;128:69–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blanco E, Shen HF, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25–50.

    Article  CAS  PubMed  Google Scholar 

  17. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPa signalling pathway. Trends Cell Biol. 2009;19:72–80.

    Article  CAS  PubMed  Google Scholar 

  18. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288:2051–4.

    Article  CAS  PubMed  Google Scholar 

  19. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, et al. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012;109:6662–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–3.

    Article  CAS  PubMed  Google Scholar 

  22. Bagwe RP, Yang CY, Hilliard LR, Tan WH. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir. 2004;20:8336–42.

    Article  CAS  PubMed  Google Scholar 

  23. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004–21.

    Article  CAS  Google Scholar 

  24. Yan XW, Luo YC, Zhang ZB, Li ZX, Luo Q, Yang LM, et al. Europium-labeled activity-based probe through click chemistry: absolute serine protease quantification using 153Eu isotope dilution ICP/MS. Angew Chem Int Ed. 2012;51:3358–63.

    Article  CAS  Google Scholar 

  25. Hatherley D, Graham SC, Turner J, Harlos K, Stuart DI, Barclay AN. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol Cell. 2008;31:266–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (21535007, 21874112 and 21475108), the National Basic Research 973 Program (2014CB932004) and the National Science and Technology Basic Work (2015FY111400) as well as the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (21521004) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, Grant IRT13036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuquan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yu, D., Ge, F. et al. Fluorescent and mass spectrometric evaluation of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem 411, 4193–4202 (2019). https://doi.org/10.1007/s00216-019-01825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01825-y

Keywords

Navigation