Skip to main content
Log in

Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Abnormal DNA methylations such as hypermethylation on tumor suppressor genes and global hypomethylation have been recognized as hallmarks of cancer. Previously, we reported a bioluminescence resonance energy transfer (BRET)-based global DNA methylation level assay using a methyl-CpG-binding domain-fused firefly luciferase (MBD-Fluc) and unmethylated CpG-binding domain-fused firefly luciferase (CXXC-Fluc). The BRET signal between MBD-Fluc and BOBO-3 DNA intercalating dye depends on the methylated CpG contents, whereas the BRET signal between CXXC-Fluc and BOBO-3 depends on the unmethylated CpG contents. Therefore, the global DNA methylation level can be quantified using the BRET assay. However, these assays must be performed separately, because the same luciferase fuses to both MBD and CXXC. In this study, we developed a one-step quantification assay of global DNA methylation based on a multicolor BRET assay using MBD-Fluc and CXXC-fused Oplophorus luciferase (CXXC-Oluc). We demonstrated that MBD-Fluc and CXXC-Oluc simultaneously excite BOBO-3 and BOBO-1 DNA intercalating dyes on genomic DNA, respectively. Moreover, the BRET signals produced from MBD-Fluc and CXXC-Oluc depended on the methylation status of the CpG contents. These results demonstrate that global DNA methylation can be quantified by this multicolor BRET assay in a single tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10:805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.

    Article  CAS  PubMed  Google Scholar 

  4. Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taby R, Issa JP. Cancer epigenetics. CA Cancer J Clin. 2010;60:376–92.

    Article  PubMed  Google Scholar 

  6. Torano EG, Petrus S, Fernandez AF, Fraga MF. Global DNA hypomethylation in cancer: review of validated methods and clinical significance. Clin Chem Lab Med. 2012;50:1733–42.

    Article  CAS  PubMed  Google Scholar 

  7. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  8. Cravo M, Pinto R, Fidalgo P, Chaves P, Gloria L, Nobre-Leitao C, et al. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996;39:434–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mikeska T, Craig JM. DNA methylation biomarkers: cancer and beyond. Genes. 2014;5:821–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14:e1007362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 1980;8:4763–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Armstrong KM, Bermingham EN, Bassett SA, Treloar BP, Roy NC, Barnett MP. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol J. 2011;6:113–7.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Suo Y, Yin R, Shen H, Wang H. Ultra-performance liquid chromatography/tandem mass spectrometry for accurate quantification of global DNA methylation in human sperms. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:1647–52.

    Article  CAS  PubMed  Google Scholar 

  14. Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol. 2006;310:211–50.

    CAS  PubMed  Google Scholar 

  15. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim JS, Chung WC, Lee KM, Paik CN, Lee KS, Kim HJ, et al. Association between genetic instability and Helicobacter pylori infection in gastric epithelial dysplasia. Gastroenterol Res Pract. 2012;2012:360929.

    PubMed  PubMed Central  Google Scholar 

  18. Yoshida W, Baba Y, Karube I. Global DNA methylation detection system using MBD-fused luciferase based on bioluminescence resonance energy transfer assay. Anal Chem. 2016;88:9264–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida W, Baba Y, Banzawa K, Karube I. A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase. Anal Chim Acta. 2017;990:168–73.

    Article  CAS  PubMed  Google Scholar 

  20. Baba Y, Karube I, Yoshida W. Global DNA methylation level monitoring by methyl-CpG binding domain-fused luciferase. Anal Lett. 2018. https://doi.org/10.1080/00032719.2018.1494739.

  21. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol. 2012;7:1848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Kurakata H, Hosoya T. C6-deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic 19 kDa component of Oplophorus luciferase. Biochem Biophys Res Commun. 2013;437:23–8.

    Article  CAS  PubMed  Google Scholar 

  23. Loening AM, Wu AM, Gambhir SS. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods. 2007;4:641–3.

    Article  CAS  PubMed  Google Scholar 

  24. Taka N, Karube I, Yoshida W. Direct detection of hemimethylated DNA by SRA-fused luciferase based on bioluminescence resonance energy transfer. Anal Lett. 2018. https://doi.org/10.1080/00032719.2018.1533022.

Download references

Funding

This work was supported by the Japan Foundation for Applied Enzymology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Yoshida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, Y., Yamamoto, K. & Yoshida, W. Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation. Anal Bioanal Chem 411, 4765–4773 (2019). https://doi.org/10.1007/s00216-019-01583-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01583-x

Keywords

Navigation