Skip to main content
Log in

Nanoparticle microarray for high-throughput microbiome metabolomics using matrix-assisted laser desorption ionization mass spectrometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI)-MS-based metabolomics platform was developed using a pre-fabricated microarray of nanoparticles and organic matrices. Selected organic matrices, inorganic nanoparticle (NP) suspensions, and sputter coated metal NPs, as well as various additives, were tested for metabolomics analysis of the turkey gut microbiome. Four NPs and one organic matrix were selected as the optimal matrix set: α-cyano-4-hydroycinnamic acid, Fe3O4 and Au NPs in positive ion mode with 10 mM sodium acetate, and Cu and Ag NPs in negative ion mode with no additive. Using this set of five matrices, over two thousand unique metabolite features were reproducibly detected across intestinal samples from turkeys fed a diet amended with therapeutic or sub-therapeutic antibiotics (200 g/ton or 50 g/ton bacitracin methylene disalicylate (BMD), respectively), or non-amended feed. Among the thousands of unique features, 56 of them were chemically identified using MALDI-MS/MS, with the help of in-parallel liquid chromatography (LC)-MS/MS analysis. Lastly, as a proof of concept application, this protocol was applied to 52 turkey cecal samples at three different time points from the antibiotic feed trial. Statistical analysis indicated variations in the metabolome of turkeys with different ages or treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78. https://doi.org/10.1002/mas.20108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703. https://doi.org/10.1073/pnas.0812874106.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aretz I, Meierhofer D. Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int J Mol Sci. 2016;17(5). https://doi.org/10.3390/ijms17050632.

  4. Dunn WB, Erban A, Weber RJM, Creek DJ, Brown M, Breitling R, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9(1):44–66. https://doi.org/10.1007/s11306-012-0434-4.

    Article  CAS  Google Scholar 

  5. Fagerer SR, Nielsen S, Ibáñez A, Zenobi R. Matrix-assisted laser desorption/ionization matrices for negative mode metabolomics. Eur J Mass Spectrom. 2013;19(1):39–47. https://doi.org/10.1255/ejms.1209.

    Article  CAS  Google Scholar 

  6. Wang J-N, Zhou Y, Zhu T-Y, Wang X, Guo Y-L. Prediction of acute cellular renal allograft rejection by urinary metabolomics using MALDI-FTMS. J Proteome Res. 2008;7(8):3597–601. https://doi.org/10.1021/pr800092f.

    Article  CAS  PubMed  Google Scholar 

  7. Korte AR, Stopka SA, Morris N, Razunguzwa T, Vertes A. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays. Anal Chem. 2016;88(18):8989–96. https://doi.org/10.1021/acs.analchem.6b01186.

    Article  CAS  PubMed  Google Scholar 

  8. Korte AR, Lee YJ. MALDI-MS analysis and imaging of small molecule metabolites with 1, 5-diaminonaphthalene (DAN). J Mass Spectrom. 2014;49(8):737–41.

    Article  CAS  Google Scholar 

  9. Shroff R, Svatoš A. Proton sponge: a novel and versatile MALDI matrix for the analysis of metabolites using mass spectrometry. Anal Chem. 2009;81(19):7954–9. https://doi.org/10.1021/ac901048z.

    Article  CAS  PubMed  Google Scholar 

  10. Lu M, Yang X, Yang Y, Qin P, Wu X, Cai Z. Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials. 2017;7(4):87. https://doi.org/10.3390/nano7040087.

    Article  CAS  PubMed Central  Google Scholar 

  11. Chiang C-K, Chen W-T, Chang H-T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev. 2011;40(3):1269–81. https://doi.org/10.1039/c0cs00050g.

    Article  CAS  PubMed  Google Scholar 

  12. Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal Chem. 2016;88(18):8926–30. https://doi.org/10.1021/acs.analchem.6b02732.

    Article  CAS  PubMed  Google Scholar 

  13. Kawasaki H, Ozawa T, Hisatomi H, Arakawa R. Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules. Rapid Commun Mass Spectrom. 2012;26(16):1849–58. https://doi.org/10.1002/rcm.6301.

    Article  CAS  PubMed  Google Scholar 

  14. Dufresne M, Thomas A, Breault-Turcot J, Masson J-F, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem. 2013;85(6):3318–24. https://doi.org/10.1021/ac3037415.

    Article  CAS  PubMed  Google Scholar 

  15. Dufresne M, Masson J-F, Chaurand P. Sodium-doped gold-assisted laser desorption ionization for enhanced imaging mass spectrometry of triacylglycerols from thin tissue sections. Anal Chem. 2016;88(11):6018–25. https://doi.org/10.1021/acs.analchem.6b01141.

    Article  CAS  PubMed  Google Scholar 

  16. Medicine FaDACfV (2012) The judicious use of medically important antimicrobial drugs in food-producing animals. Author, Rockville, MD.

  17. Hernandez E, Bargiela R, Diez MS, Friedrichs A, Perez-Cobas AE, Gosalbes MJ. Functional consequences of microbial shifts in the human gastrointestinal tract linked to antibiotic treatment and obesity. Gut Microbes. 2013;4. https://doi.org/10.4161/gmic.25321.

  18. Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol. 2016;7:1144. https://doi.org/10.3389/fmicb.2016.01144.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yan S, Huang J, Chen Z, Jiang Z, Li X, Chen Z. Metabolomics in gut microbiota: applications and challenges. Sci Bull. 2016;61(15):1151–3. https://doi.org/10.1007/s11434-016-1142-7.

    Article  CAS  Google Scholar 

  20. Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: an open-source Interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom. 2013;24(5):718–21. https://doi.org/10.1007/s13361-013-0607-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8(1):3. https://doi.org/10.1186/s13321-016-0115-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42(W1):W94–9. https://doi.org/10.1093/nar/gku436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yukihira D, Miura D, Saito K, Takahashi K, Wariishi H. MALDI−MS-based high-throughput metabolite analysis for intracellular metabolic dynamics. Anal Chem. 2010;82(10):4278–82. https://doi.org/10.1021/ac100024w.

    Article  CAS  PubMed  Google Scholar 

  24. Miura D, Fujimura Y, Tachibana H, Wariishi H. Highly sensitive matrix-assisted laser desorption ionization-mass spectrometry for high-throughput metabolic profiling. Anal Chem. 2010;82(2):498–504. https://doi.org/10.1021/ac901083a.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Wang Y, Guo S, Guo Y, Liu H, Li Z. Ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid quantitative and qualitative determination of serum free fatty acids by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta. 2013;794:82–9. https://doi.org/10.1016/j.aca.2013.07.060.

    Article  CAS  PubMed  Google Scholar 

  26. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018; gky310-gky310.

  27. Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of the intestinal bacterial Community of the Maturing Broiler Chicken. Appl Environ Microbiol. 2003;69(11):6816–24. https://doi.org/10.1128/AEM.69.11.6816-6824.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scupham AJ. Succession in the intestinal microbiota of preadolescent turkeys. FEMS Microbiol Ecol. 2007;60(1):136–47. https://doi.org/10.1111/j.1574-6941.2006.00245.x.

    Article  CAS  PubMed  Google Scholar 

  29. Cheung Lam AH, Sandoval N, Wadhwa R, Gilkes J, Do TQ, Ernst W, et al. Assessment of free fatty acids and cholesteryl esters delivered in liposomes as novel class of antibiotic. BMC Res Notes. 2016;9(1):337. https://doi.org/10.1186/s13104-016-2138-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng CJ, Yoo J-S, Lee T-G, Cho H-Y, Kim Y-H, Kim W-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005;579(23):5157–62. https://doi.org/10.1016/j.febslet.2005.08.028.

    Article  CAS  PubMed  Google Scholar 

  31. Crompton MJ, Dunstan RH, Macdonald MM, Gottfries J, von Eiff C, Roberts TK. Small changes in environmental parameters Lead to alterations in antibiotic resistance, cell morphology and membrane fatty acid composition in Staphylococcus lugdunensis. PLoS One. 2014;9(4):e92296.

    Article  Google Scholar 

  32. Defez R, Esposito R, Angelini C, Bianco C. Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule Bacteroids. Mol Plant-Microbe Interact. 2016;29(6):484–95. https://doi.org/10.1094/MPMI-01-16-0010-R.

    Article  CAS  PubMed  Google Scholar 

  33. Matilla MA, Daddaoua A, Chini A, Morel B, Krell T. An auxin controls bacterial antibiotics production. Nucleic Acids Res. 2018; gky766-gky766.

  34. Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R. Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology. 2006;152(8):2421–31.

    Article  CAS  Google Scholar 

  35. Zelante T, Iannitti Rossana G, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via Interleukin-22. Immunity. 2013;39(2):372–85. https://doi.org/10.1016/j.immuni.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  36. Taub FE, DeLeo JM, Thompson EB. Sequential comparative hybridizations analyzed by computerized image processing can identify and quantitate regulated RNAs. DNA. 1983;2(4):309–27. https://doi.org/10.1089/dna.1983.2.309.

    Article  CAS  PubMed  Google Scholar 

  37. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23:41.

    Article  CAS  Google Scholar 

  38. Schäferling M. Methods in molecular biology Vol. 671: Biological microarrays: methods and protocols. Edited by Ali Khademhosseini, Kahp-Yang Suh and Mohammed Zourob. ChemBioChem. 2011;12(10):1602–3. https://doi.org/10.1002/cbic.201100279.

    Article  CAS  Google Scholar 

  39. Hutchens TW, Yip T-T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7(7):576–80. https://doi.org/10.1002/rcm.1290070703.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the United States Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jin Lee.

Ethics declarations

All animal experiments were performed at the National Animal Disease Center (NADC), USDA, Ames, IA, USA, following the ethical guidelines set by the Institutional Animal Care and Use Committee (IACUC) using the approved protocol ARS-2869.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, R.L., Dueñas, M.E., Looft, T. et al. Nanoparticle microarray for high-throughput microbiome metabolomics using matrix-assisted laser desorption ionization mass spectrometry. Anal Bioanal Chem 411, 147–156 (2019). https://doi.org/10.1007/s00216-018-1436-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1436-5

Keywords

Navigation