Skip to main content
Log in

A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

DNA methylation catalyzed by DNA methyl transferase (MTase) is a significant epigenetic process for modulating gene expression. Abnormal levels of DNA MTase enzyme have been regarded as a cancer biomarker or a sign of bacterial diseases. We developed a novel colorimetric method to assay M.SssI MTase activity employing peroxidase-like activity of DNA template Ag/Pt NCs without using restriction enzymes. Based on inhibiting the peroxidase reaction that occurred in the TMB-H2O2 system, in the presence of MTase, a highly sensitive and selective colorimetric biosensor was fabricated with a detection limit (LOD) of 0.05 U/mL and a linear range from 0.5 to 10 U/mL. The changes in absorption intensity were monitored to quantify the M.SssI activity. This strategy had a high selectivity over other proteins. Furthermore, it is also demonstrated that this method can be used for the evaluation and screening of inhibitors for DNA MTase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  CAS  PubMed  Google Scholar 

  2. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 2012;31:1609–22.

    Article  CAS  PubMed  Google Scholar 

  4. Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3:274–93.

    Article  CAS  PubMed  Google Scholar 

  5. Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10:631–47.

    CAS  PubMed  Google Scholar 

  6. Mutze K, Langer R, Schumacher F, Becker K, Ott K, Novotny A, et al. DNA methyltransferase 1 as a predictive biomarker and potential therapeutic target for chemotherapy in gastric cancer. Eur J Cancer. 2011, 47:1817–25.

  7. Belinsky SA, Nikula KJ, Baylin SB, Issa JP. Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci. 1996;93:4045–50.

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, Mckenney JK, Peehl DM, et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 2011;21:1017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.

    Article  CAS  PubMed  Google Scholar 

  10. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632–42.

    Article  CAS  PubMed  Google Scholar 

  11. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. JNCI. 2005;97:1498–506.

    Article  CAS  PubMed  Google Scholar 

  12. Myrnes B, Norstrand K, Giercksky KE, Sjunneskog C, Krokan H. A simplified assay for O6 -methylguanine-DNA methyltransferase activity and its application to human neoplastic and non-neoplastic tissues. Carcinogenesis. 1984:1061–1064

  13. Zou D, Zhang D, Liu S, Zhao B, Wang H. Interplay of binding stoichiometry and recognition specificity for the interaction of MBD2b protein and methylated DNA revealed by affinity capillary electrophoresis coupled with laser-induced fluorescence analysis. Anal Chem. 2014;86:1775–82.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Franke AA. High-throughput and cost-effective global DNA methylation assay by liquid chromatography-mass spectrometry. Anal Chim Acta. 2011;703:58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lyko F, Ramsahoye BH, Jaenisch R. Development: DNA methylation in Drosophila melanogaster. Nature. 2000;408:538–40.

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Zhang CY. Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay. Biosens Bioelectron. 2012;31:451–7.

    Article  CAS  PubMed  Google Scholar 

  17. Boye E, Marinus MG, Løbner-Olesen A. Quantitation of Dam methyltransferase in Escherichia coli. J Bacteriol. 1992;174:1682–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wan Y, Wang Y, Luo J, Lu Z. Bisulfite modification of immobilized DNAs for methylation detection. Biosens Bioelectron. 2007;22:2415–21.

    Article  CAS  PubMed  Google Scholar 

  19. Yin H, Zhou Y, Xu Z, Wang M, Ai S. Ultrasensitive electrochemical immunoassay for DNA methyltransferase activity and inhibitor screening based on methyl binding domain protein of MeCP2 and enzymatic signal amplification. Biosens Bioelectron. 2013;49:39–45.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, Wang F, Wang M, Yin H, Ai S. A novel signal-on strategy for M.SssI methyltransferase activity analysis and inhibitor screening based on photoelectrochemical immunosensor. Biosens Bioelectron. 2015;66:109–14.

    Article  CAS  PubMed  Google Scholar 

  21. Deng H, Yang X, Yeo SPX, Gao Z. Highly sensitive electrochemical methyltransferase activity assay. Anal Chem. 2014;86:2117–23.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Liu Y, Li Y, Zhao Y, Wei W, Liu S. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy. Anal Chim Acta. 2016;933:75–81.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao HF, Liang RP, Wang JW, Qiu JD. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity. Biosens Bioelectron. 2015;63:458–64.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng YP, Hu J, Long Y, Zhang CY. Sensitive detection of DNA methyltransferase using hairpin probe-based primer generation rolling circle amplification-induced chemiluminescence. Anal Chem. 2013;85:6143–50.

    Article  CAS  PubMed  Google Scholar 

  25. Kermani HA, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MRDNA. methyltransferase activity detection based on graphene quantum dots using fluorescence and fluorescence anisotropy. Sens Actuat B. 2017;241:217–23.

    Article  CAS  Google Scholar 

  26. Ji L, Cai Z, Qian Y, Wu P, Zhang H, Cai C. Highly sensitive methyltransferase activity assay and inhibitor screening based on fluorescence quenching of graphene oxide integrated with the site-specific cleavage of restriction endonuclease. Chem Commun. 2014;50:10691–4.

    Article  CAS  Google Scholar 

  27. Ouyang X, Liu J, Li J, Yang R. A carbon nanoparticle-based low-background biosensing platform for sensitive and label-free fluorescent assay of DNA methylation. Chem Commun (Camb). 2012;48:88–90.

    Article  CAS  Google Scholar 

  28. Gao C, Li H, Liu Y, Wei W, Zhang Y, Liu S. Label-free fluorescence detection of DNA methylation and methyltransferase activity based on restriction endonuclease HpaII and exonuclease III. Analyst. 2014;139:6387–92.

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Liu P, Jiang W, Li X, Yin H, Ai S. Photoelectrochemical immunosensing platform for M.SssI methyltransferase activity analysis and inhibitor screening based on g-C3N4 and CdS quantum dots. Sens Actuat B. 2017;244:458–65.

    Article  CAS  Google Scholar 

  30. Liu P, Zhang K, Zhang R, Yin H, Zhou Y, Ai S. A colorimetric assay of DNA methyltransferase activity based on the keypad lock of duplex DNA modified meso-SiO2@Fe3O4. Anal Chim Acta. 2016;920:80–5.

    Article  CAS  PubMed  Google Scholar 

  31. Li ZM, Zhong ZH, Liang RP, Qiu JD. The colorimetric assay of DNA methyltransferase activity based on strand displacement amplification. Sens Actuat B. 2017;238:626–32.

    Article  CAS  Google Scholar 

  32. Cui W, Wang L, Xu X, Wang Y, Jiang W. A loop-mediated cascade amplification strategy for highly sensitive detection of DNA methyltransferase activity. Sens Actuat B. 2017;244:599–605.

    Article  CAS  Google Scholar 

  33. Su F, Wang L, Sun Y, Liu C, Duan X, Li Z. Highly sensitive detection of CpG methylation in genomic DNA by AuNP-based colorimetric assay with ligase chain reaction. Chem Commun (Camb). 2015;51:3371–4.

    Article  CAS  Google Scholar 

  34. Song G, Chen C, Ren J, Qu X. A simple universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano. 2009;3:1183–9.

    Article  CAS  PubMed  Google Scholar 

  35. Liu T, Zhao J, Zhang D, Li G (2010) Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Anal Chem 82:229–233

  36. Wu Z, Wu ZK, Tang H, Tang LJ, Jiang JH. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay. Anal Chem. 2013;85:4376–83.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Liu Z, Lin H, Nie Z, Chen J, Xu X, et al. Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Anal Chem. 2010;82:1935–41.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y, Chen F, Lin M, Fan C. A methylation-blocked cascade amplification strategy for label-free colorimetric detection of DNA methyltransferase activity. Biosens Bioelectron. 2014);54:565–70.

    Article  CAS  PubMed  Google Scholar 

  39. Kermani HA, Hosseini M, Dadmehr M, Ganjali MR. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters. Anal Bioanal Chem. 2016;408:4311–8.

    Article  CAS  PubMed  Google Scholar 

  40. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Label-free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens Bioelectron. 2015;73:108–13.

    Article  CAS  PubMed  Google Scholar 

  41. Qiu X, Wang P, Cao Z. Hybridization chain reaction modulated DNA-hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let-7 miRNA family. Biosens Bioelectron. 2014;60:351–7.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Wang K, Li K. B, Shi W, Jia WP, Chen X, Sun T, Han DM (2017) A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron 91:374–379

  43. Shokri E, Hosseini M, Faridbod F, Rahaie M. Synthesis and assessment of DNA/silver nanoclusters probes for optimal and selective detection of Tristeza virus mild strains. J Fluorescence. 2016;26:1795–803.

    Article  CAS  Google Scholar 

  44. Shokri E, Hosseini M, Faridbod F, Rahaie M. Rapid presymptomatic recognition of Tristeza viral RNA by a novel fluorescent self-dimerized DNA-silver nanocluster probe. RSC Adv. 2016;6:99437–43.

    Article  CAS  Google Scholar 

  45. Liu W, Lai H, Huang R, Zhao C, Wang Y, Weng X, Zhou X (2015) DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5’-C-rich/G-rich-3’ tails. Biosens Bioelectron 68:736–7740

  46. Zheng C, Zheng AX, Liu B, Zhang XL, He Y, Li J, et al. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun. 2014;50:13103–6.

    Article  CAS  Google Scholar 

  47. You H, Peng Z, Wu J, Yang H. Lattice contracted AgPt nanoparticles. Chem Commun. 2011;47:12595–7.

    Article  CAS  Google Scholar 

  48. Gao Z, Xu M, Hou L, Chen G, Tang D. Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal Chim Acta. 2013;776:79–86.

    Article  CAS  PubMed  Google Scholar 

  49. Higuchi A, Siao YD, Yang ST, Hsieh PV, Fukushima H, Chang Y, et al. Preparation of a DNA aptamer–Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal Chem. 2008;80:6580–6.

    Article  CAS  PubMed  Google Scholar 

  50. Wu LL, Wang LY, Xie ZJ, Xue F, Peng CF. Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA-Ag/Pt nanoclusters. RSC Adv. 2016;6:75384–9.

    Article  CAS  Google Scholar 

  51. Wu LL, Wang LY, Xie ZJ, Pan N, Peng CF. Colorimetric assay of l-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters. Sens Actuat B. 2016;235:110–6.

    Article  CAS  Google Scholar 

  52. Fu XM, Liu ZJ, Cai SX, Zhao YP, Wu DZ, Li CY, et al. Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chinese Chem Lett. 2016;27:920–6.

    Article  CAS  Google Scholar 

  53. Stier I, Kiss A. Cytosine-to-uracil deamination by SssI DNA methyltransferase. PloS One. 2013;8(10):e79003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. New SY, Lee ST, Su XD. DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale. 2016;8:17729–46.

    Article  CAS  PubMed  Google Scholar 

  55. An H, Jin B. Prospects of nanoparticle–DNA binding and its implications in medical biotechnology. Biotechnol Adv. 2012;30:1721–32.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Xu WJ, Zeng YP, Zhang CY. Sensitive detection of DNA methyltransferase activity by transcription-mediated duplex-specific nuclease-assisted cyclic signal amplification. Chem Commun. 2015;51:13968–71.

    Article  CAS  Google Scholar 

  57. Xing XW, Tang F, Wu J, Chu JM, Feng YQ, Zhou X, Yuan BF (2014) Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling. Anal Chem 86:11269-11274.

Download references

Acknowledgements

The authors thank the research Council of University of Tehran (Grant 28645/01/02) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermani, H.A., Hosseini, M., Miti, A. et al. A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal Bioanal Chem 410, 4943–4952 (2018). https://doi.org/10.1007/s00216-018-1143-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1143-2

Keywords

Navigation