Skip to main content
Log in

FractionOptimizer: a method for optimal peptide fractionation in bottom-up proteomics

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent advances in mass spectrometry and separation technologies created the opportunities for deep proteome characterization using shotgun proteomics approaches. The “real world” sample complexity and high concentration range limit the sensitivity of this characterization. The common strategy for increasing the sensitivity is sample fractionation prior to analysis either at the protein or the peptide level. Typically, fractionation at the peptide level is performed using linear gradient high-performance liquid chromatography followed by uniform fraction collection. However, this way of peptide fractionation results in significantly suboptimal operation of the mass spectrometer due to the non-uniform distribution of peptides between the fractions. In this work, we propose an approach based on peptide retention time prediction allowing optimization of chromatographic conditions and fraction collection procedures. An open-source software implementing the approach called FractionOptimizer was developed and is available at http://hg.theorchromo.ru/FractionOptimizer. The performance of the developed tool was demonstrated for human embryonic kidney (HEK293) cell line lysate. In these experiments, we improved the uniformity of the peptides distribution between fractions. Moreover, in addition to 13,492 peptides, we found 6787 new peptides not identified in the experiments without fractionation and up to 800 new proteins (or 25%).

The analysis workflow employing FractionOptimizer software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferguson PL, Smith RD. Proteome analysis by mass spectrometry. Annu Rev Biophys Biomol Struct. 2003;32:399–424. https://doi.org/10.1146/annurev.biophys.32.110601.141854.

    Article  CAS  PubMed  Google Scholar 

  2. Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev RA. Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol Cell Proteomics. 2013;12:3330–8. https://doi.org/10.1074/mcp.O113.028787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Fonslow BR, Shan B, Baek M, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113:2343–94. https://doi.org/10.1021/cr3003533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature. 2016;537:328–38. https://doi.org/10.1038/nature19947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC−MS/MS. J Proteome Res. 2011;10:1785–93. https://doi.org/10.1021/pr101060v.

    Article  CAS  PubMed  Google Scholar 

  6. Kelstrup CD, Jersie-Christensen RR, Batth TS, Arrey TN, Kuehn A, Kellmann M, et al. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. J Proteome Res. 2014;13:6187–95. https://doi.org/10.1021/pr500985w.

    Article  CAS  PubMed  Google Scholar 

  7. Nagaraj N, Alexander Kulak N, Cox J, Neuhauser N, Mayr K, Hoerning O, et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteomics. 2012;11:M111.013722. https://doi.org/10.1074/mcp.M111.013722.

    Article  CAS  PubMed  Google Scholar 

  8. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014;13:339–47. https://doi.org/10.1074/mcp.M113.034769.

    Article  CAS  PubMed  Google Scholar 

  9. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, et al. A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol. 2015;33:743–9. https://doi.org/10.1038/nbt.3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, et al. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 2013;4:609–20. https://doi.org/10.1016/j.celrep.2013.07.018.

    Article  CAS  PubMed  Google Scholar 

  11. Aguilar M. Reversed-phase high-performance liquid chromatography. In: Aguilar MI, editors. HPLC of Peptides and Proteins. New Jersey: Humana Press; 2004. pp. 9–22. https://doi.org/10.1385/1-59259-742-4:9.

  12. Mant CT, Hodges RS. Analysis of peptides by high-performance liquid chromatography. In: Eckenhoff RG, Dmochowski IJ, editors. Methods in enzymology. New York: Academic Press; 1996. pp. 3–50. https://doi.org/10.1016/S0076-6879(96)71003-0.

  13. Mitulović G. New HPLC techniques for proteomics analysis: a short overview of latest developments. J Liq Chromatogr Relat Technol. 2015;38:390–403. https://doi.org/10.1080/10826076.2014.941266.

    Article  CAS  Google Scholar 

  14. Gokce E, Andrews GL, Dean RA, Muddiman DC. Increasing proteome coverage with offline RP HPLC coupled to online RP nanoLC-MS. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:610–4. https://doi.org/10.1016/j.jchromb.2011.01.032.

    Article  CAS  Google Scholar 

  15. Moruz L, Pichler P, Stranzl T, Mechtler K, Käll L. Optimized nonlinear gradients for reversed-phase liquid chromatography in shotgun proteomics. Anal Chem. 2013;85:7777–85. https://doi.org/10.1021/ac401145q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11:2019–26. https://doi.org/10.1002/pmic.201000722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dwivedi RC, Spicer V, Harder M, Antonovici M, Ens W, Standing KG, et al. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal Chem. 2008;80:7036–42. https://doi.org/10.1021/ac800984n.

    Article  CAS  PubMed  Google Scholar 

  18. Gorshkov AV, Tarasova IA, Evreinov VV, Savitski MM, Nielsen ML, Zubarev RA, et al. Liquid chromatography at critical conditions: comprehensive approach to sequence-dependent retention time prediction. Anal Chem. 2006;78:7770–7. https://doi.org/10.1021/ac060913x.

    Article  CAS  PubMed  Google Scholar 

  19. Goloborodko AA, Levitsky LI, Ivanov MV, Gorshkov MV. Pyteomics—a Python framework for exploratory data analysis and rapid software prototyping in proteomics. J Am Soc Mass Spectrom. 2013;24:301–4. https://doi.org/10.1007/s13361-012-0516-6.

    Article  CAS  PubMed  Google Scholar 

  20. Lobas AA, Karpov DS, Kopylov AT, Solovyeva EM, Ivanov MV, Ilina IY, et al. Exome-based proteogenomics of HEK-293 human cell line: coding genomic variants identified at the level of shotgun proteome. Proteomics. 2016;16:1980–91. https://doi.org/10.1002/pmic.201500349.

    Article  CAS  PubMed  Google Scholar 

  21. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7. https://doi.org/10.1093/bioinformatics/bth092.

    Article  CAS  PubMed  Google Scholar 

  22. Ivanov MV, Levitsky LI, Lobas AA, Panic T, Laskay ÜA, Mitulovic G, et al. Empirical multidimensional space for scoring peptide spectrum matches in shotgun proteomics. J Proteome Res. 2014;13:1911–20. https://doi.org/10.1021/pr401026y.

    Article  CAS  PubMed  Google Scholar 

  23. Choi M, Eren-Dogu ZF, Colangelo C, Cottrell J, Hoopmann MR, Kapp EA, et al. ABRF proteome informatics research group (iPRG) 2015 study: detection of differentially abundant proteins in label-free quantitative LC-MS/MS experiments. J Proteome Res. 2017;16:945–57. https://doi.org/10.1021/acs.jproteome.6b00881.

    Article  CAS  PubMed  Google Scholar 

  24. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–26. https://doi.org/10.1074/mcp.M113.031591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Gao J, Zhu H, Xu J, He H, Gu L, et al. Enhancing membrane protein identification using a simplified centrifugation and detergent-based membrane extraction approach. Anal Chem. 2018. https://doi.org/10.1021/acs.analchem.7b03710.

  26. Laskay ÜA, Lobas AA, Srzentić K, Gorshkov MV, Tsybin YO. Proteome digestion specificity analysis for rational design of extended bottom-up and middle-down proteomics experiments. J Proteome Res. 2013;12:5558–69. https://doi.org/10.1021/pr400522h.

    Article  CAS  PubMed  Google Scholar 

  27. Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol. 2010;28:83–9. https://doi.org/10.1038/nbt.1592.

    Article  CAS  PubMed  Google Scholar 

  28. Bubis JA, Levitsky LI, Ivanov MV, Tarasova IA, Gorshkov MV. Comparative evaluation of label-free quantification methods for shotgun proteomics. Rapid Commun Mass Spectrom. 2017;31:606–12. https://doi.org/10.1002/rcm.7829.

    Article  CAS  PubMed  Google Scholar 

  29. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4:1265–72. https://doi.org/10.1074/mcp.M500061-MCP200.

    Article  CAS  PubMed  Google Scholar 

  30. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 2006;5:2339–47. https://doi.org/10.1021/pr060161n.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation, project no. 14-14-00971. The authors thank Dr. Irina A. Tarasova and Mark V. Ivanov for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Gorshkov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyeva, E.M., Lobas, A.A., Kopylov, A.T. et al. FractionOptimizer: a method for optimal peptide fractionation in bottom-up proteomics. Anal Bioanal Chem 410, 3827–3833 (2018). https://doi.org/10.1007/s00216-018-1054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1054-2

Keywords

Navigation