Skip to main content
Log in

Ambient desorption/ionization mass spectrometry: evolution from rapid qualitative screening to accurate quantification tool

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this article, some recent trends and developments in ambient desorption/ionization mass spectrometry (ADI-MS) are reviewed, with a special focus on quantitative analyses with direct, open-air sampling. Accurate quantification with ADI-MS is still not routinely performed, but this aspect is considered of utmost importance for the advancement of the field. In fact, several research groups are devoted to the development of novel and optimized ADI-MS approaches. Some key trends include novel sample introduction strategies for improved reproducibility, tailored sample preparation protocols for removing the matrix and matrix effects, and multimode ionization sources. In addition, there is significant interest in quantitative mass spectrometry imaging.

Conceptual diagram of the ambient desorption/ionization mass spectrometry approach with different desorption/ionization probes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3
Fig. 4a–i
Fig. 5
Fig. 6a–b

Similar content being viewed by others

References

  1. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.

    Article  CAS  PubMed  Google Scholar 

  2. Carroll D, Dzidic I, Stillwell R, Haegele K, Horning E. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal Chem. 1975;47(14):2369–73.

    Article  CAS  Google Scholar 

  3. Robb DB, Covey TR, Bruins AP. Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal Chem. 2000;72(15):3653–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hanold KA, Fischer SM, Cormia PH, Miller CE, Syage JA. Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal Chem. 2004;76(10):2842–51.

    Article  CAS  PubMed  Google Scholar 

  5. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    Article  CAS  PubMed  Google Scholar 

  6. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.

    Article  CAS  PubMed  Google Scholar 

  7. Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem. 2013;64:481–505.

    Article  CAS  PubMed  Google Scholar 

  8. Albert A, Shelley JT, Engelhard C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem. 2014;406(25):6111–27.

    Article  CAS  PubMed  Google Scholar 

  9. Shelley JT, Hieftje GM. Ambient mass spectrometry: approaching the chemical analysis of things as they are. J Anal At Spectrom. 2011;26(11):2153–9.

    Article  CAS  Google Scholar 

  10. Chen H, Gamez G, Zenobi R. What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom. 2009;20(11):1947–63.

    Article  CAS  PubMed  Google Scholar 

  11. Takats Z, Wiseman JM, Cooks RG. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom. 2005;40(10):1261–75.

    Article  CAS  PubMed  Google Scholar 

  12. Nanita SC, Kaldon LG. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis. Anal Bioanal Chem. 2016;408(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  13. Venter A, Cooks RG. Desorption electrospray ionization in a small pressure-tight enclosure. Anal Chem. 2007;79(16):6398–403.

    Article  CAS  PubMed  Google Scholar 

  14. Chipuk JE, Brodbelt JS. Transmission mode desorption electrospray ionization. J Am Soc Mass Spectrom. 2008;19(11):1612–20.

    Article  CAS  PubMed  Google Scholar 

  15. IonSense. Installation and operations manual for ID-Cube source and power supply. Saugus: IonSense; 2014.

  16. Jastrzembski JA, Sacks GL. Solid phase mesh enhanced sorption from headspace (SPMESH) coupled to DART-MS for rapid quantification of trace-level volatiles. Anal Chem. 2016;88(17):8617–23.

    Article  CAS  PubMed  Google Scholar 

  17. Shelley JT, Ray SJ, Hieftje GM. Laser ablation coupled to a flowing atmospheric pressure afterglow for ambient mass spectral imaging. Anal Chem. 2008;80(21):8308–13.

    Article  CAS  PubMed  Google Scholar 

  18. Bokhart MT, Rosen E, Thompson C, Sykes C, Kashuba ADM, Muddiman DC. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization. Anal Bioanal Chem. 2015;407(8):2073–84.

    Article  CAS  PubMed  Google Scholar 

  19. Wachs T, Henion J. Electrospray device for coupling microscale separations and other miniaturized devices with electrospray mass spectrometry. Anal Chem. 2001;73(3):632–8.

    Article  CAS  PubMed  Google Scholar 

  20. Van Berkel GJ, Sanchez AD, Quirke JME. Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe. Anal Chem. 2002;74(24):6216–23.

    Article  CAS  PubMed  Google Scholar 

  21. Yu S, Crawford E, Tice J, Musselman B, Wu J-T. Bioanalysis without sample cleanup or chromatography: the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal Chem. 2008;81(1):193–202.

    Article  CAS  Google Scholar 

  22. Orejas J, Pfeuffer KP, Ray SJ, Pisonero J, Sanz-Medel A, Hieftje GM. Effect of internal and external conditions on ionization processes in the FAPA ambient desorption/ionization source. Anal Bioanal Chem. 2014;406(29):7511–21.

    Article  CAS  PubMed  Google Scholar 

  23. Shelley JT, Wiley JS, Hieftje GM. Ultrasensitive ambient mass spectrometric analysis with a pin-to-capillary flowing atmospheric-pressure afterglow source. Anal Chem. 2011;83(14):5741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McLafferty FW. Tandem mass spectrometry. Science. 1981;214(4518):280–7.

    Article  CAS  PubMed  Google Scholar 

  25. Yang S, Ding J, Zheng J, Hu B, Li J, Chen H, et al. Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem. 2009;81(7):2426–36.

    Article  CAS  PubMed  Google Scholar 

  26. Badal SP, Michalak SD, Chan GC-Y, You Y, Shelley JT. Tunable ionization modes of a flowing atmospheric-pressure afterglow (FAPA) ambient ionization source. Anal Chem. 2016;88(7):3494–503.

    Article  CAS  PubMed  Google Scholar 

  27. Wright JP, Heywood MS, Thurston GK, Farnsworth PB. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source. J Am Soc Mass Spectrom. 2013;24(3):335–40.

    Article  CAS  PubMed  Google Scholar 

  28. Vaclavik L, Zachariasova M, Hrbek V, Hajslova J. Analysis of multiple mycotoxins in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry. Talanta. 2010;82(5):1950–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bennett RV, Gamage CM, Galhena AS, Fernández FM. Contrast-enhanced differential mobility-desorption electrospray ionization-mass spectrometry imaging of biological tissues. Anal Chem. 2014;86(8):3756–63.

    Article  CAS  PubMed  Google Scholar 

  30. Weston DJ, Bateman R, Wilson ID, Wood TR, Creaser CS. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal Chem. 2005;77(23):7572–80.

    Article  CAS  PubMed  Google Scholar 

  31. Polfer NC, Valle JJ, Moore DT, Oomens J, Eyler JR, Bendiak B. Differentiation of isomers by wavelength-tunable infrared multiple-photon dissociation-mass spectrometry: application to glucose-containing disaccharides. Anal Chem. 2006;78(3):670–9.

    Article  CAS  PubMed  Google Scholar 

  32. Dane AJ, Cody RB. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry. Analyst. 2010;135(4):696–9.

    Article  CAS  PubMed  Google Scholar 

  33. Galhena AS, Harris GA, Kwasnik M, Fernández FM. Enhanced direct ambient analysis by differential mobility-filtered desorption electrospray ionization-mass spectrometry. Anal Chem. 2010;82(22):9159–63.

    Article  CAS  PubMed  Google Scholar 

  34. Ferreres F, Llorach R, Gil-Izquierdo A. Characterization of the interglycosidic linkage in di-, tri-, tetra-and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2004;39(3):312–21.

    Article  CAS  PubMed  Google Scholar 

  35. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Science. 2006;311(5767):1566–70.

    Article  CAS  PubMed  Google Scholar 

  36. Cody RB. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem. 2008;81(3):1101–7.

    Article  CAS  Google Scholar 

  37. Harris GA, Falcone CE, Fernández FM. Sensitivity “hot spots” in the direct analysis in real time mass spectrometry of nerve agent simulants. J Am Soc Mass Spectrom. 2012;23(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  38. Saang’onyo DS, Smith DL. Optimization of direct analysis in real time (DART) linear ion trap parameters for the detection and quantitation of glucose. Rapid Commun Mass Spectrom. 2012;26(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  39. Lee CW, Su H, Chen PY, Lin SJ, Shiea J, Shin SJ, et al. Rapid identification of pesticides in human oral fluid for emergency management by thermal desorption electrospray ionization/mass spectrometry. J Mass Spectrom. 2016;51(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Chen H, Yang X, Chen J, Li C. Direct quantification of organic acids in aerosols by desorption electrospray ionization mass spectrometry. Atmos Environ. 2009;43(17):2717–20.

    Article  CAS  Google Scholar 

  41. Bruggemann M, Karu E, Stelzer T, Hoffmann T. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS). Environ Sci Technol. 2015;49(9):5571–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hemalatha RG, Ganayee MA, Pradeep T. Electrospun nanofiber mats as “smart surfaces” for desorption electrospray ionization mass spectrometry (DESI MS)-based analysis and imprint imaging. Anal Chem. 2016;88(11):5710–7.

  43. Manicke NE, Yang Q, Wang H, Oradu S, Ouyang Z, Cooks RG. Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. Int J Mass Spectrom. 2011;300(2):123–9.

    Article  CAS  Google Scholar 

  44. Manicke NE, Abu-Rabie P, Spooner N, Ouyang Z, Cooks RG. Quantitative analysis of therapeutic drugs in dried blood spot samples by paper spray mass spectrometry: an avenue to therapeutic drug monitoring. J Am Soc Mass Spectrom. 2011;22(9):1501–7.

    Article  CAS  PubMed  Google Scholar 

  45. Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79(21):8098–106.

    Article  CAS  PubMed  Google Scholar 

  46. Nyadong L, Galhena AS, Fernández FM. Desorption electrospray/metastable-induced ionization: a flexible multimode ambient ion generation technique. Anal Chem. 2009;81(18):7788–94.

    Article  CAS  PubMed  Google Scholar 

  47. Nyadong L, Late S, Green MD, Banga A, Fernández FM. Direct quantitation of active ingredients in solid artesunate antimalarials by noncovalent complex forming reactive desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2008;19(3):380–8.

    Article  CAS  PubMed  Google Scholar 

  48. Chan GC-Y, Shelley JT, Wiley JS, Engelhard C, Jackson AU, Cooks RG, et al. Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal Chem. 2011;83(10):3675–86.

    Article  CAS  PubMed  Google Scholar 

  49. Pfeuffer KP, Shelley JT, Ray SJ, Hieftje GM. Visualization of mass transport and heat transfer in the FAPA ambient ionization source. J Anal At Spectrom. 2013;28(3):379–87.

    Article  CAS  Google Scholar 

  50. Pfeuffer KP, Ray SJ, Hieftje GM. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source. J Am Soc Mass Spectrom. 2014;25(5):800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schilling GD, Shelley JT, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, et al. Detection of positive and negative ions from a flowing atmospheric pressure afterglow using a Mattauch-Herzog mass spectrograph equipped with a Faraday-strip array detector. J Am Soc Mass Spectrom. 2010;21(1):97–103.

  52. Harris GA, Fernández FM. Simulations and experimental investigation of atmospheric transport in an ambient metastable-induced chemical ionization source. Anal Chem. 2008;81(1):322–9.

    Article  CAS  Google Scholar 

  53. Wang H, Liu JJ, Cooks RG, Ouyang Z. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed. 2010;49(5):877–80.

    Article  CAS  Google Scholar 

  54. Wang H, Ren Y, McLuckey MN, Manicke NE, Park J, Zheng L, et al. Direct quantitative analysis of nicotine alkaloids from biofluid samples using paper spray mass spectrometry. Anal Chem. 2013;85(23):11540–4.

    Article  CAS  PubMed  Google Scholar 

  55. Yang Q, Manicke NE, Wang H, Petucci C, Cooks RG, Ouyang Z. Direct and quantitative analysis of underivatized acylcarnitines in serum and whole blood using paper spray mass spectrometry. Anal Bioanal Chem. 2012;404(5):1389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maher S, Jjunju FP, Damon DE, Gorton H, Maher YS, Syed SU, et al. Direct analysis and quantification of metaldehyde in water using reactive paper spray mass spectrometry. Sci Rep. 2016;6:35643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Z, Xu W, Manicke NE, Cooks RG, Ouyang Z. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal Chem. 2012;84(2):931–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17(12):1712–6.

    Article  CAS  PubMed  Google Scholar 

  59. Brewer TM, Verkouteren JR. Atmospheric identification of active ingredients in over-the-counter pharmaceuticals and drugs of abuse by atmospheric pressure glow discharge mass spectrometry (APGD-MS). Rapid Commun Mass Spectrom. 2011;25(17):2407–17.

    Article  CAS  PubMed  Google Scholar 

  60. Bierstedt A, Panne U, Rurack K, Riedel J. Characterization of two modes in a dielectric barrier discharge probe by optical emission spectroscopy and time-of-flight mass spectrometry. J Anal At Spectrom. 2015;30(12):2496–506.

    Article  CAS  Google Scholar 

  61. Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, et al. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal Chem. 2008;80(8):2646–53.

    Article  CAS  PubMed  Google Scholar 

  62. Shelley JT, Hieftje GM. Ionization matrix effects in plasma-based ambient mass spectrometry sources. J Anal At Spectrom. 2010;25(3):345–50.

    Article  CAS  Google Scholar 

  63. Jjunju FPM, Badu-Tawiah AK, Li AY, Soparawalla S, Roqan IS, Cooks RG. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization. Int J Mass Spectrom. 2013;345:80–8.

    Article  CAS  Google Scholar 

  64. Haapala M, Pól J, Saarela V, Arvola V, Kotiaho T, Ketola RA, et al. Desorption atmospheric pressure photoionization. Anal Chem. 2007;79(20):7867–72.

    Article  CAS  PubMed  Google Scholar 

  65. Xian F, Hendrickson CL, Marshall AG. High resolution mass spectrometry. Anal Chem. 2012;84(2):708–19.

    Article  CAS  PubMed  Google Scholar 

  66. Albert A, Kramer A, Scheeren S, Engelhard C. Rapid and quantitative analysis of pesticides in fruits by QuEChERS pretreatment and low-temperature plasma desorption/ionization orbitrap mass spectrometry. Anal Methods. 2014;6(15):5463–71.

    Article  CAS  Google Scholar 

  67. Cotte-Rodríguez I, Takáts Z, Talaty N, Chen H, Cooks RG. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal Chem. 2005;77(21):6755–64.

    Article  CAS  PubMed  Google Scholar 

  68. Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal Chem. 1995;67(11):1772–84.

    Article  CAS  PubMed  Google Scholar 

  69. Jackson AU, Werner SR, Talaty N, Song Y, Campbell K, Cooks RG, et al. Targeted metabolomic analysis of Escherichia coli by desorption electrospray ionization and extractive electrospray ionization mass spectrometry. Anal Biochem. 2008;375(2):272–81.

  70. Bentayeb K, Ackerman LK, Begley TH. Ambient ionization-accurate mass spectrometry (AMI-AMS) for the identification of nonvisible set-off in food-contact materials. J Agric Food Chem. 2012;60(8):1914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sero R, Nunez O, Bosch J, Grases J, Rodriguez P, Moyano E, et al. Desorption electrospray ionization-high resolution mass spectrometry for the screening of veterinary drugs in cross-contaminated feedstuffs. Anal Bioanal Chem. 2015;407(24):7369–78.

    Article  CAS  PubMed  Google Scholar 

  72. Williams JP, Scrivens JH. Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun Mass Spectrom. 2005;19(24):3643–50.

    Article  CAS  PubMed  Google Scholar 

  73. Krieger S, Hayen H, Schmitz OJ. Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS. Anal Bioanal Chem. 2013;405(25):8337–45.

    Article  CAS  PubMed  Google Scholar 

  74. Myung S, Wiseman JM, Valentine SJ, Takats Z, Cooks RG, Clemmer DE. Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured states. J Phys Chem B. 2006;110(10):5045–51.

    Article  CAS  PubMed  Google Scholar 

  75. D’Agostino PA, Chenier CL. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(11):1617–24.

    Article  CAS  PubMed  Google Scholar 

  76. Wu C, Ifa DR, Manicke NE, Cooks RG. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal Chem. 2009;81(18):7618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan S, Tian Y, Li M, Zhao J, Zhu L, Zhang W, et al. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry. Sci Rep. 2015;5:8725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vaclavik L, Rosmus J, Popping B, Hajslova J. Rapid determination of melamine and cyanuric acid in milk powder using direct analysis in real time-time-of-flight mass spectrometry. J Chromatogr A. 2010;1217(25):4204–11.

    Article  CAS  PubMed  Google Scholar 

  79. Song L, Gibson SC, Bhandari D, Cook KD, Bartmess JE. Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept. Anal Chem. 2009;81(24):10080–8.

    Article  CAS  PubMed  Google Scholar 

  80. Chen H, Yang S, Wortmann A, Zenobi R. Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry. Angew Chem Int Ed. 2007;46(40):7591–4.

    Article  CAS  Google Scholar 

  81. Jagerdeo E, Abdel-Rehim M. Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent. J Am Soc Mass Spectrom. 2009;20(5):891–9.

    Article  CAS  PubMed  Google Scholar 

  82. Thunig J, Flø L, Pedersen-Bjergaard S, Hansen SH, Janfelt C. Liquid-phase microextraction and desorption electrospray ionization mass spectrometry for identification and quantification of basic drugs in human urine. Rapid Commun Mass Spectrom. 2012;26(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  83. Haunschmidt M, Klampfl CW, Buchberger W, Hertsens R. Determination of organic UV filters in water by stir bar sorptive extraction and direct analysis in real-time mass spectrometry. Anal Bioanal Chem. 2010;397(1):269–75.

    Article  CAS  PubMed  Google Scholar 

  84. Figueiredo EC, Sanvido GB, Arruda MAZ, Eberlin MN. Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization. Analyst. 2010;135(4):726–30.

    Article  CAS  PubMed  Google Scholar 

  85. Mirabelli MF, Wolf J-C, Zenobi R. Direct coupling of solid-phase microextraction with mass spectrometry: sub-pg/g sensitivity achieved using a dielectric barrier discharge ionization source. Anal Chem. 2016;88(14):7252–8.

    Article  CAS  PubMed  Google Scholar 

  86. Zou J, Talbot F, Tata A, Ermini L, Franjic K, Ventura M, et al. Ambient mass spectrometry imaging with picosecond infrared laser ablation electrospray ionization (PIR-LAESI). Anal Chem. 2015;87(24):12071–9.

    Article  CAS  PubMed  Google Scholar 

  87. Lee JK, Jansson ET, Nam HG, Zare RN. High-resolution live-cell imaging and analysis by laser desorption/ionization droplet delivery mass spectrometry. Anal Chem. 2016;88(10):5453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Groseclose MR, Castellino S. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem. 2013;85(21):10099–106.

    Article  CAS  PubMed  Google Scholar 

  89. Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X, Ide JL, et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A. 2013;110(5):1611–6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Feider CL, Elizondo N, Eberlin LS. Ambient ionization and FAIMS mass spectrometry for enhanced imaging of multiply charged molecular ions in biological tissues. Anal Chem. 2016;88(23):11533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417.

    Article  CAS  PubMed  Google Scholar 

  92. Gundlach-Graham A, Burger M, Allner S, Schwarz G, Wang HAO, Gyr L, et al. High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: part I. Instrumentation and two-dimensional imaging of geological samples. Anal Chem. 2015;87(16):8250–8.

  93. Burger M, Gundlach-Graham A, Allner S, Schwarz G, Wang HAO, Gyr L, et al. High-speed, high-resolution, multielemental LA-ICP-TOFMS imaging: part II. Critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples. Anal Chem. 2015;87(16):8259–67.

  94. Mueller L, Herrmann AJ, Techritz S, Panne U, Jakubowski N. Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS. Anal Bioanal Chem. 2017;409(14):3667–76.

    Article  CAS  PubMed  Google Scholar 

  95. Herdering C, Wehe CA, Reifschneider O, Raj I, Ciarimboli G, Diebold K, et al. Laser ablation based bioimaging with simultaneous elemental and molecular mass spectrometry: towards spatially resolved speciation analysis. Rapid Commun Mass Spectrom. 2013;27(23):2588–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacob T. Shelley or Heiko Hayen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelley, J.T., Badal, S.P., Engelhard, C. et al. Ambient desorption/ionization mass spectrometry: evolution from rapid qualitative screening to accurate quantification tool. Anal Bioanal Chem 410, 4061–4076 (2018). https://doi.org/10.1007/s00216-018-1023-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1023-9

Keywords

Navigation