Skip to main content
Log in

Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are generated in biological processes involving electron transfer reactions and can act in a beneficial or deleterious way. When intracellular ROS levels exceed the cell’s anti-oxidant capacity, oxidative stress occurs. In this work, Cu isotope fractionation was evaluated in HepG2 cells under oxidative stress conditions attained in various ways. HepG2 is a well-characterised human hepatoblastoma cell line adapted to grow under high oxidative stress conditions. During a pre-incubation stage, cells were exposed to a non-toxic concentration of Cu for 24 h. Subsequently, the medium was replaced and cells were exposed to one of three different external stressors: H2O2, tumour necrosis factor α (TNFα) or UV radiation. The isotopic composition of the intracellular Cu was determined by multi-collector ICP-mass spectrometry to evaluate the isotope fractionation accompanying Cu fluxes between cells and culture medium. For half of these setups, the pre-incubation solution also contained N-acetyl-cysteine (NAC) as an anti-oxidant to evaluate its protective effect against oxidative stress via its influence on the extent of Cu isotope fractionation. Oxidative stress caused the intracellular Cu isotopic composition to be heavier compared to that in untreated control cells. The H2O2 and TNFα exposures rendered similar results, comparable to those obtained after mild UV exposure. The heaviest Cu isotopic composition was observed under the strongest oxidative conditions tested, i.e., when the cell surfaces were directly exposed to UV radiation without apical medium and in absence of NAC. NAC mitigated the extent of isotope fractionation in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signalling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1005–28.

    Article  CAS  Google Scholar 

  2. Nose K. Role of reactive oxygen species in the regulation of physiological functions. Biol Pharm Bull. 2000;23:897–903.

    Article  CAS  Google Scholar 

  3. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001;11:173–86.

    Article  CAS  Google Scholar 

  4. Davies KJA. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life. 1999;48:41–7.

    Article  CAS  Google Scholar 

  5. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  Google Scholar 

  6. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  CAS  Google Scholar 

  7. de Andrade KQ, Moura FA, dos Santos JM, de Araújo ORP, de Farias Santos JC, Goulart MOF. Oxidative stress and inflammation in hepatic diseases: therapeutic possibilities of N-acetylcysteine. Int J Mol Sci. 2015;16:30269–308.

    Article  Google Scholar 

  8. Sun SY. N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol Ther. 2010;9:109–10.

    Article  Google Scholar 

  9. Bleackley MR, MacGillivray RT. Transition metal homeostasis: from yeast to human disease. Biometals. 2011;24:785–809.

    Article  CAS  Google Scholar 

  10. Prousek J. Fenton chemistry in biology and medicine. Pure Appl Chem. 2007;79:2325–38.

    Article  CAS  Google Scholar 

  11. Vanhaecke F, Degryse P. Isotopic analysis—fundamentals and applications using ICP-MS. Wiley-VCH: Weinheim; 2012.

    Book  Google Scholar 

  12. Vanhaecke F, Balcaen L, Malinovsky D. Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis. J Anal At Spectrom. 2009;24:863–86.

    Article  CAS  Google Scholar 

  13. Walczyk T, von Blanckenburg F. Natural iron isotope variations in human blood. Science. 2002;295:2065–6.

    Article  CAS  Google Scholar 

  14. Balter V, da Costa AN, Bondanese VP, Jaouen K, Lamboux A, Sangrajrang S, et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. Proc Natl Acad Sci U S A. 2015;112:982–5.

    Article  CAS  Google Scholar 

  15. Gordon GW, Monge J, Channon MB, Wu Q, Skulan JL, Anbar AD, et al. Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia. 2014;28:2112–6.

    Article  CAS  Google Scholar 

  16. Larner F, Woodley LN, Shousha S, Moyes A, Humphreys-Williams E, Strekopytov S, et al. Zinc isotopic compositions of breast cancer tissue. Metallomics. 2015;7:112–7.

    Article  CAS  Google Scholar 

  17. Costas-Rodríguez M, Delanghe J, Vanhaecke F. High-precision isotopic analysis of essential mineral elements in biomedicine: natural isotope ratio variations as potential diagnostic and/or prognostic markers. TrAC Trends Anal Chem. 2016;76:182–93.

    Article  Google Scholar 

  18. Lauwens S, Costas-Rodríguez M, Van Vlierberghe H, Vanhaecke F. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study. Sci Rep UK. 2016;6:30683.

    Article  CAS  Google Scholar 

  19. Costas-Rodríguez M, Anoshkina Y, Lauwens S, Van Vlierberghe H, Delanghe J, Vanhaecke F. Isotopic analysis of Cu in blood serum by multicollector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis? Metallomics. 2015;7:491–8.

    Article  Google Scholar 

  20. Bondanese VP, Lamboux A, Simon M, Lafont JE, Albalat E, Pichat S, et al. Hypoxia induces copper stable isotope fractionation in hepatocellular carcinoma, in a HIF-independent manner. Metallomics. 2016;8:1177–84.

    Article  CAS  Google Scholar 

  21. Paredes E, Avazeri E, Malard V, Vidaud C, Reiller PE, Ortega R, et al. Evidence of isotopic fractionation of natural uranium in cultured human cells. Proc Natl Acad Sci U S A. 2016;113:14007–12.

    Article  CAS  Google Scholar 

  22. Cadiou J-L, Pichat S, Bondanese VP, Soulard A, Fujii T, Albarede F, et al. Copper transporters are responsible for copper isotopic fractionation in eukaryotic cells. Sci Rep. 2017;7:44533.

    Article  CAS  Google Scholar 

  23. Flórez MR, Anoshkina Y, Costas-Rodríguez M, Grootaert C, Van Camp J, Delanghe J, et al. Natural Fe isotope fractionation in an intestinal Caco-2 cell line model. J Anal At Spectrom. 2017;32:1713–20.

    Article  Google Scholar 

  24. Navarrete JU, Borrok DM, Viveros M, Ellzey JT. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochim Cosmochim Acta. 2011;75:784–99.

    Article  CAS  Google Scholar 

  25. Kafantaris FCA, Borrock DM. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Chem Geol. 2014;366:42–51.

    Article  CAS  Google Scholar 

  26. Amor M, Busigny V, Louvat P, Gélabert A, Cartigny P, Durand-Dubief M, et al. Mass-dependent and-independent signature of Fe isotopes in magnetotactic bacteria. Science. 2016;352:705–8.

    Article  CAS  Google Scholar 

  27. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980;209:497–9.

    Article  CAS  Google Scholar 

  28. Alía M, Ramos S, Mateos R, Bravo L, Goya L. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol. 2005;19:119–28.

    Article  Google Scholar 

  29. Van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. In: Cree IA, editor. Cancer cell culture. Methods in molecular biology (methods and protocols). New York: Humana Press; 2011. p. 237–45.

    Google Scholar 

  30. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74:214–26.

    Article  CAS  Google Scholar 

  31. Baxter DC, Rodushkin I, Engström E, Malinovsky D. Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2006;21:427–30.

    Article  CAS  Google Scholar 

  32. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74:139–62.

    Article  CAS  Google Scholar 

  33. Jiménez I, Speisky H. Effects of copper ions on the free radical-scavenging properties of reduced gluthathione: implications of a complex formation. J Trace Elem Med Biol. 2000;14:161–7.

    Article  Google Scholar 

  34. Turnlund JR. Human whole-body copper metabolism. Am J Clin Nutr. 1998;67:960S–4S.

    Article  CAS  Google Scholar 

  35. Peña MMO, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr. 1999;129:1251–60.

    Article  Google Scholar 

  36. Jiménez I, Aracena P, Letelier ME, Navarro P, Speisky H. Chronic exposure of HepG2 cells to excess copper results in depletion of glutathione and induction of metallothionein. Toxicol in Vitro. 2002;16:167–75.

    Article  Google Scholar 

  37. Song MO, Li J, Freedman JH. Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009;38:386–401.

    Article  CAS  Google Scholar 

  38. Aston NS, Watt N, Morton IE, Tanner MS, Evans GS. Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line). Hum Exp Toxicol. 2000;19:367–76.

    Article  CAS  Google Scholar 

  39. Pham AN, Xing G, Miller CJ, Waite TD. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal. 2013;301:54–64.

    Article  CAS  Google Scholar 

  40. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.

    Article  CAS  Google Scholar 

  41. Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal. 2009;11:2245–63.

    Article  CAS  Google Scholar 

  42. Schrader M, Wodopia R, Fahimi HD. Induction of tubular peroxisomes by UV irradiation and reactive oxygen species in HepG2 cells. J Histochem Cytochem. 1999;47:1141–8.

    Article  CAS  Google Scholar 

  43. Vile GF, Tyrrell RM. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic Biol Med. 1995;18:721–30.

    Article  CAS  Google Scholar 

  44. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60:6–20.

    Article  CAS  Google Scholar 

  45. De Flora S, Izzotti A, D'agostini F, Balansky RM. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis. 2001;22:999–1013.

    Article  Google Scholar 

  46. Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30:42–59.

    Article  CAS  Google Scholar 

  47. Balter V, Lamboux A, Zazzo A, Télouk P, Leverrier Y, Marvel J, et al. Contrasting cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics. 2013;5:1470–82.

    Article  CAS  Google Scholar 

  48. Mandal S, Das G, Askari H. Interactions of N-acetyl-l-cysteine with metals (Ni2+, Cu2+ and Zn2+): An experimental and theoretical study. Struct Chem. 2014;25:43–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Flemish Research Foundation FWO-Vlaanderen (research project “G023014N”) is acknowledged for financial support. María R. Flórez thanks the Special Research Fund of Ghent University (BOF-UGent) for her postdoctoral grant and Marta Costas-Rodriguez thanks FWO-Vlaanderen for her postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vanhaecke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flórez, M.R., Costas-Rodríguez, M., Grootaert, C. et al. Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry. Anal Bioanal Chem 410, 2385–2394 (2018). https://doi.org/10.1007/s00216-018-0909-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0909-x

Keywords

Navigation