Skip to main content
Log in

Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The fiber coating is the key part of the solid-phase microextraction (SPME) technique, and it determines the sensitivity, selectivity, and repeatability of the analytical method. In this work, amine (NH2)-functionalized material of Institute Lavoisier (MIL)-53(Al) nanoparticles were successfully synthesized, characterized, and applied as the SPME fiber coating for efficient sample pretreatment owing to their unique structures and excellent adsorption properties. Under optimized conditions, the NH2-MIL-53(Al)-coated fiber showed good precision, low limits of detection (LODs) [0.025–0.83 ng L-1 for synthetic musks (SMs) and 0.051–0.97 ng L-1 for organochlorine pesticides (OCPs)], and good linearity. Experimental results showed that the NH2-MIL-53(Al) SPME coating was solvent resistant and thermostable. In addition, the extraction efficiencies of the NH2-MIL-53(Al) coating for SMs and OCPs were higher than those of commercially available SPME fiber coatings such as polydimethylsiloxane, polydimethylsiloxane–divinylbenzene, and polyacrylate. The reasons may be that the analytes are adsorbed on NH2-MIL-53(Al) primarily through ππ interactions, electron donor–electron acceptor interactions, and hydrogen bonds between the analytes and organic linkers of the material. Direct immersion (DI) SPME–gas chromatography–mass spectrometry methods based on NH2-MIL-53(Al) were successfully applied for the analysis of tap and river water samples. The recoveries were 80.3–115% for SMs and 77.4–117% for OCPs. These results indicate that the NH2-MIL-53(Al) coating may be a promising alternative to SPME coatings for the enrichment of SMs and OCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62(19):2145–8.

    Article  CAS  Google Scholar 

  2. Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis. J Chromatogr A. 2000;880(1-2):35–62.

    Article  CAS  Google Scholar 

  3. Lambropoulou DA, Konstantinou IK, Albanis TA. Recent developments in headspace microextraction techniques for the analysis of environmental contaminants in different matrices. J Chromatogr A. 2007;1152(1-2):70–96.

    Article  CAS  Google Scholar 

  4. Bermejo AM, Lopez P, Alvarez I, Tabernero MJ, Fernandez P. Solid-phase microextraction for the determination of cocaine and cocaethylene inhuman hair by gas chromatography-mass spectrometry. Forensic Sci Int. 2006;156(1):2–8.

    Article  CAS  Google Scholar 

  5. Vogliardi S, Tucci M, Stocchero G, Ferrara SD, Favretto D. Sample preparation methods for determination of drugs of abuse in hair samples: a review. Anal Chim Acta. 2015;857:1–27.

    Article  CAS  Google Scholar 

  6. Ouyang GF, Vuckovic D, Pawliszyn J. Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev. 2011;111(4):2784–814.

    Article  CAS  Google Scholar 

  7. Mehdinia A, Aziz-Zanjani MO. Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction. Trends Anal Chem. 2013;42:205–15.

    Article  CAS  Google Scholar 

  8. Xu JQ, Zheng J, Tian JY, Zhu F, Zeng F, Su CY, et al. New materials in solid-phase microextraction. Trends Anal Chem. 2013;47:68–83.

    Article  CAS  Google Scholar 

  9. Liu JF, Li N, Jiang GB, Liu JM, Jönsson JÅ, Wen MJ. Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography-flame ionization detection. J Chromatogr A. 2005;1066:27–32.

    Article  CAS  Google Scholar 

  10. Herrera-Herrera AV, Angel Gonzalez-Curbelo M, Hernandez-Borges J, Angel R-DM. Carbon nanotubes applications in separation science: a review. Anal Chim Acta. 2012;734:1–30.

    Article  CAS  Google Scholar 

  11. Turiel E, Tadeo JL, Martin-Esteban A. Molecularly imprinted polymeric fibers for solid-phase microextraction. Anal Chem. 2007;79(8):3099–104.

    Article  CAS  Google Scholar 

  12. Ferey G. Hybrid porous solids: past, present, future. Chem Soc Rev. 2008;37(1):191–214.

    Article  CAS  Google Scholar 

  13. Betard A, Fischer RA. Metal-organic framework thin films: from fundamentals to applications. Chem Rev. 2012;112(2):1055–83.

    Article  CAS  Google Scholar 

  14. Li JR, Sculley J, Zhou HC. Metal-organic frameworks for separations. Chem Rev. 2011;112(2):869–932.

    Article  Google Scholar 

  15. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–9.

    Article  CAS  Google Scholar 

  16. Yang CX, Yan XP. Application of metal-organic frameworks in sample pretreatment. Chin J Anal Chem. 2013;41(9):1297–300.

    Article  CAS  Google Scholar 

  17. Gu ZY, Yang CX, Chang N, Yan XP. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res. 2012;45(5):734–45.

    Article  CAS  Google Scholar 

  18. Pocio-Bautista P, Pacheco-Fernandez I, Pasan J, Pino V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? - a review. Anal Chim Acta. 2016;939:26–41.

    Article  Google Scholar 

  19. Serre C, Millange F, Thouvenot C, Nogues M, Marsolier G, Louer D, et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J Am Chem Soc. 2002;124(45):13519–26.

    Article  CAS  Google Scholar 

  20. Yang CX, Liu SS, Wang HF, Wang SW, Yan XP. High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. Analyst. 2012;137(1):133–9.

    Article  CAS  Google Scholar 

  21. Llewellyn PL, Bourrelly S, Serre C, Filinchuk Y, Férey G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed. 2006;45(46):7751–4.

    Article  CAS  Google Scholar 

  22. Chen XF, Zang H, Wang X, Cheng JG, Zhao RS, Cheng CG, et al. Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry. Analyst. 2012;137(22):5411–9.

    Article  CAS  Google Scholar 

  23. Couck S, Denayer JFM, Baron GV, Rémy T, Gascon J, Kapteijn F. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc. 2009;131(18):6326–7.

    Article  CAS  Google Scholar 

  24. Luo X, Li GK, Hu YF. In-tube solid-phase microextraction based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine. Talanta. 2017;165:377–83.

    Article  CAS  Google Scholar 

  25. Kallenborn R, Gatermann R, Planting S, Rimkus GG, Lund M, Schlabach M, et al. Gas chromatographic determination of synthetic musk compounds in Norwegian air samples. J Chromatogr A. 1999;846(1-2):295–306.

    Article  CAS  Google Scholar 

  26. Vallecillos L, Borrull F, Pocurull E. An automated headspace solid-phase microextraction followed by gas chromatography-mass spectrometry method to determine macrocyclic musk fragrances in wastewater samples. Anal Bioanal Chem. 2013;405(29):9547–54.

    Article  CAS  Google Scholar 

  27. Rimkus GG. Polycyclic musk fragrances in the aquatic environment. Toxicol Lett. 1999;111(1-2):37–56.

    Article  CAS  Google Scholar 

  28. Jjemba PK. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotox Environ Safe. 2006;63(1):113–30.

    Article  CAS  Google Scholar 

  29. Liu HT, Liu L, Xion YQ, Yang XM, Luan TG. Simultaneous determination of UV filters and polycyclic musks in aqueous samples by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A. 2010;1217:6747–53.

    Article  CAS  Google Scholar 

  30. Huang Z, Lee HK. Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. J Chromatogr A. 2015;1401:9–16.

    Article  CAS  Google Scholar 

  31. Ke YY, Zhu F, Zeng F, Luan TG, Su CY, Ouyang GF. Preparation of graphene-coated solid-phase microextraction fiber and its application on organochlorine pesticides determination. J Chromatogr A. 2013;1300:187–92.

    Article  CAS  Google Scholar 

  32. Xie LJ, Liu SQ, Han ZB, Jiang RF, Liu H, Zhu F, et al. Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta. 2015;853:303–10.

    Article  CAS  Google Scholar 

  33. Liu SQ, Xie LJ, Zheng J, Jiang RF, Zhu F, Luan TG, et al. Mesoporous TiO2 nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Anal Chim Acta. 2015;878:109–17.

    Article  CAS  Google Scholar 

  34. Li SY, Zhu F, Jiang RF, Ouyang GF. Preparation and evaluation of amino modified graphene solid-phase microextraction fiber and its application to the determination of synthetic musks in water samples. J Chromatogr A. 2016;1429:1–7.

    Article  CAS  Google Scholar 

  35. Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP. In situ hydrothermal growth of metal − organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem. 2009;81(23):9771–7.

    Article  CAS  Google Scholar 

  36. Polo M, Garcia Jares C, Llompart M, Cela R. Optimization of a sensitive method for the determination of nitro musk fragrances in waters by solid-phase microextraction and gas chromatography with micro electron capture detection using factorial experimental design. Anal Bioanal Chem. 2007;388(8):1789–98.

    Article  CAS  Google Scholar 

  37. Zhang SL, Du Z, Li G. Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta. 2013;115:32–9.

    Article  CAS  Google Scholar 

  38. Li SY, Lu CW, Zhu F, Jiang RF, Ouyang GF. Preparation of C18 composite solid-phase microextraction fiber and its application to the determination of organochlorine pesticides in water samples. Anal Chim Acta. 2015;873:57–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the 973 Project (2012CB821701), NNSFC (21225731, 20477166), and the NSF of Guangdong Province (S2013030013474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangfeng Ouyang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Liu, S., Han, Z. et al. Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples. Anal Bioanal Chem 409, 5239–5247 (2017). https://doi.org/10.1007/s00216-017-0472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0472-x

Keywords

Navigation