Skip to main content
Log in

1,2-Dimethylimidazole-4-sulfonyl chloride (DMISC), a novel derivatization strategy for the analysis of propofol by LC-ESI-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analysis of the anesthetic agent propofol in biological samples by LC-MS/MS is a great challenge due to weak fragmentation and poor ionization efficacy of propofol resulting in weak signal intensities. Improvements of the ionization and fragmentation efficacy can be achieved by conversion of propofol to its dimethylimidazolesulfonyl (DMIS) derivative by a derivatization reaction using 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC). This DMIS derivative produced intense [M + H]+ ions in positive-ion LC-ESI-MS/MS with the dimethylimidazole moieties representing the most abundant product ions. Derivatization of serum samples is achieved by direct conversion of the acetonitrile supernatant of a protein precipitation with DMISC followed by a double liquid-liquid extraction using n-hexane. Reliability of the method was confirmed under consideration of the validation parameters selectivity, linearity, accuracy and precision, analytical limits, and processed sample stability. Linearity was demonstrated over the whole calibration range from 5 to 1000 ng/ml with the use of a 1/x 2 weighting. Stability of the processed samples was verified for a time period of up to 25 h. Due to its high sensitivity, appropriate quantification and detection limits (LLoQ = 5 ng/ml, LoD = 0.95 ng/ml) for toxicological propofol analyses could be achieved. Applicability of the method to biological samples could be verified by analysis of a human serum sample collected after propofol-induced sedation.

A novel derivatization strategy using 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) was developed to improve the ionization and fragmentation efficacy of propofol for LC-ESI-MS/MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kotani Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci Ther. 2008;14:95–106. doi:10.1111/j.1527-3458.2008.00043.x.

    Article  CAS  Google Scholar 

  2. Heuss LT, Schnieper P, Drewe J, Pflimlin E, Beglinger C. Safety of propofol for conscious sedation during endoscopic procedures in high-risk patients-a prospective, controlled study. Am J Gastroenterol. 2003;98:1751–7. doi:10.1111/j.1572-0241.2003.07596.x.

    CAS  Google Scholar 

  3. Lamond DW. Review article: safety profile of propofol for paediatric procedural sedation in the emergency department. Emerg Med Australas. 2010;22:265–86. doi:10.1111/j.1742-6723.2010.01298.x.

    Article  Google Scholar 

  4. Silbergeld DL, Mueller WM, Couey PS, Ojemann GA, Lettich E. Use of propofol (Diprivan) for awake craniotomies: technical note. Surg Neurol. 1992;38:271–2.

    Article  CAS  Google Scholar 

  5. Seifert H, Schmitt TH, Gültekin T, Caspary WF, Wehrmann T. Sedation with propofol plus midazolam versus propofol alone for interventional endoscopic procedures : a prospective, randomized study. Aliment Pharmacol Ther. 2000;14:1207–14.

    Article  CAS  Google Scholar 

  6. Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10:3639–49.

    Article  CAS  Google Scholar 

  7. Byrne MF, Chiba N, Singh H, Sadowski DC, for the Clinical Affairs Committee of the Canadian Association of Gastroenterology. Propofol use for sedation during endoscopy in adults: a Canadian Association of Gastroenterology position statement. Can J Gastroenterol. 2008;22:457–9. doi:10.1155/2008/268320.

    Article  Google Scholar 

  8. Cohen LB, Hightower CD, Wood DA, Miller KM, Aisenberg J. Moderate level sedation during endoscopy: a prospective study using low-dose propofol, meperidine/fentanyl, and midazolam. Gastrointest Endosc. 2004;59:795–803. doi:10.1016/S0016-5107(04)00349-9.

    Article  Google Scholar 

  9. Le Guellec C, Lacarelle B, Villard PH, Point H, Catalin J, Durand A. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg. 1995;81:855–61.

    CAS  Google Scholar 

  10. Veroli P, O’Kelly B, Bertrand F, Trouvin JH, Farinotti R, Ecoffey C. Extrahepatic metabolism of propofol in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth. 1992;68:183–6.

    Article  CAS  Google Scholar 

  11. Raoof AA, van Obbergh LJ, de Ville de Goyet J, Verbeeck RK. Extrahepatic glucuronidation of propofol in man: possible contribution of gut wall and kidney. Eur J Clin Pharmacol. 1996;50:91–6.

    Article  CAS  Google Scholar 

  12. Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60:176–82. doi:10.1111/j.1365-2125.2005.02393.x.

    Article  CAS  Google Scholar 

  13. Sneyd JR, Simons PJ, Wright B. Use of proton NMR spectroscopy to measure propofol metabolites in the urine of the female Caucasian patient. Xenobiotica. 1994;24:1021–8. doi:10.3109/00498259409043299.

    Article  CAS  Google Scholar 

  14. Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica. 1988;18:429–40.

    Article  CAS  Google Scholar 

  15. Strehler M, Preuss J, Wollersen H, Madea B. Lethal mixed intoxication with propofol in a medical layman. Arch Kriminol. 2005;217:153–60.

    Google Scholar 

  16. Bell DM, McDonough JP, Ellison JS, Fitzhugh EC. Controlled drug misuse by Certified Registered Nurse Anesthetists. J Am Assoc Nurse Anesth. 1999;67:133–40.

    CAS  Google Scholar 

  17. Iwersen-Bergmann S, Rösner P, Kühnau HC, Junge M, Schmoldt A. Death after excessive propofol abuse. Int J Legal Med. 2001;114:248–51.

    Article  CAS  Google Scholar 

  18. Zacny JP, Lichtor JL, Zaragoza JG, Coalson DW, Uitvlugt AM, Flemming DC, et al. Assessing the behavioral effects and abuse potential of propofol bolus injections in healthy volunteers. Drug Alcohol Depend. 1993;32:45–57.

    Article  CAS  Google Scholar 

  19. Zacny JP, Lichtor JL, Coalson DW, Finn RS, Uitvlugt AM, Glosten B, et al. Subjective and psychomotor effects of subanesthetic doses of propofol in healthy volunteers. Anesthesiology. 1992;76:696–702.

    Article  CAS  Google Scholar 

  20. Wilson C, Canning P, Caravati EM. The abuse potential of propofol. Clin Toxicol (Phila). 2010;48:165–70. doi:10.3109/15563651003757954.

    Article  CAS  Google Scholar 

  21. Boudoin Z. General anaesthetics and anaesthetic gases. In: Dukes MNG, Aronson JK, editors. Meyler’s side eff. drugs. 14th ed. Amsterdam: Elsevier; 2000. p. 300.

    Google Scholar 

  22. Drummer OH. A fatality due to propofol poisoning. J Forensic Sci. 1992;37:1186–9.

    Article  CAS  Google Scholar 

  23. Cirimele V, Kintz P, Doray S, Ludes B. Determination of chronic abuse of the anaesthetic agents midazolam and propofol as demonstrated by hair analysis. Int J Legal Med. 2002;116:54–7.

    Article  Google Scholar 

  24. Roussin A, Mirepoix M, Lassabe G, Dumestre-Toulet V, Gardette V, Montastruc J-L, et al. Death related to a recreational abuse of propofol at therapeutic dose range. Br J Anaesth. 2006;97:268. doi:10.1093/bja/ael168.

    Article  CAS  Google Scholar 

  25. Lee SY, Park N-H, Jeong E-K, Wi J-W, Kim C-J, Kim JY, et al. Comparison of GC/MS and LC/MS methods for the analysis of propofol and its metabolites in urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;900:1–10. doi:10.1016/j.jchromb.2012.05.011.

    Article  CAS  Google Scholar 

  26. Sørensen LK, Hasselstrøm JB. Simultaneous determination of propofol and its glucuronide in whole blood by liquid chromatography–electrospray tandem mass spectrometry and the influence of sample storage conditions on the reliability of the test results. J Pharm Biomed Anal. 2015;109:158–63. doi:10.1016/j.jpba.2015.02.035.

    Article  Google Scholar 

  27. Cohen S, Lhuillier F, Mouloua Y, Vignal B, Favetta P, Guitton J. Quantitative measurement of propofol and in main glucuroconjugate metabolites in human plasma using solid phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;854:165–72. doi:10.1016/j.jchromb.2007.04.021.

    Article  CAS  Google Scholar 

  28. Thieme D, Sachs H, Schelling G, Hornuss C. Formation of the N-methylpyridinium ether derivative of propofol to improve sensitivity, specificity and reproducibility of its detection in blood by liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:4055–8. doi:10.1016/j.jchromb.2009.10.010.

    Article  CAS  Google Scholar 

  29. Abo M, Hamd E, Wada M, Ikeda R, Kawakami S. Validation of an LC-MS/MS method for the determination of propofol, midazolam, and carbamazepine in rat plasma : application to monitor their concentrations following co-administration. 2015;38:1250–1253.

  30. Xu L, Spink DC. 1,2-Dimethylimidazole-4-sulfonyl chloride, a novel derivatization reagent for the analysis of phenolic compounds by liquid chromatography electrospray tandem mass spectrometry: application to 1-hydroxypyrene in human urine. J Chromatogr B Anal Technol Biomed Life Sci. 2007;855:159–65. doi:10.1016/j.jchromb.2007.04.039.

    Article  CAS  Google Scholar 

  31. Beaudry F, Guénette SA, Winterborn A, Marier J-F, Vachon P. Development of a rapid and sensitive LC-ESI/MS/MS assay for the quantification of propofol using a simple off-line dansyl chloride derivatization reaction to enhance signal intensity. J Pharm Biomed Anal. 2005;39:411–7. doi:10.1016/j.jpba.2005.04.041.

    Article  CAS  Google Scholar 

  32. Vaiano F, Mari F, Busardò FP, Bertol E. Enhancing the sensitivity of the LC-MS/MS detection of propofol in urine and blood by azo-coupling derivatization forensic toxicology. Anal Bioanal Chem. 2014;406:3579–87. doi:10.1007/s00216-013-7573-y.

    Article  CAS  Google Scholar 

  33. Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165:216–24. doi:10.1016/j.forsciint.2006.05.021.

    Article  CAS  Google Scholar 

  34. Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Mußhoff F. Anhang B - Anforderungen an die Validierung von Analysenmethoden. Toxichem Krimtech. 2009;79:185–208.

    Google Scholar 

  35. DIN EN ISO/IEC 32645 (1994) Chemische Analytik; Nachweis-, Erfassungs- und Bestimmungsgrenze; Ermittlung unter Wiederholbedingungen; Begriffe, Verfahren, Auswertung. Berlin: Beuth Verlag

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Kernbach-Wighton for carefully proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Maas.

Ethics declarations

The study was approved by the Ethics Committee of the Ruhr University and has been performed in accordance with ethical standards. The parents of the patient were informed about the study and gave their consent to participate.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maas, A., Maier, C., Michel-Lauter, B. et al. 1,2-Dimethylimidazole-4-sulfonyl chloride (DMISC), a novel derivatization strategy for the analysis of propofol by LC-ESI-MS/MS. Anal Bioanal Chem 409, 1547–1554 (2017). https://doi.org/10.1007/s00216-016-0086-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0086-8

Keywords

Navigation