Skip to main content
Log in

Improved method for quantitative analysis of methylated phosphatidylethanolamine species and its application for analysis of diabetic-mouse liver samples

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

N-monomethyl phosphatidylethanolamine (MMPE) and N,N-dimethyl phosphatidylethanolamine (DMPE) species are intermediates of phosphatidylcholine (PC) de-novo biosynthesis through methylation of phosphatidylethanolamine (PE). This synthesis pathway for PC is especially important in the liver when choline is deficient in the diet. Despite some efforts focused on the analysis of MMPE and DMPE species, a cost-effective and high-throughput method for determination of individual MMPE and DMPE species, including their regioisomeric structures, is still missing. Therefore we adopted and improved the “mass-tag” strategy for determining these PE-like species by methylating PE, MMPE, and DMPE molecules with deuterated methyl iodide to generate PC molecules with nine, six, and three deuterium atoms, respectively. On the basis of the principles of multidimensional mass-spectrometry-based shotgun lipidomics we could directly identify and quantify these methylated PE species, including their fatty-acyl chains and regiospecific positions. The method provided remarkable sensitivity, with a limit of detection at 0.5 fmol μL−1, high specificity, and a broad linear-dynamics range of >2500 folds. By applying this method to liver samples from streptozotocin (STZ)-induced diabetic mice and controls, we found that the levels of PC species tended to decrease and the amounts of PE species tended to increase in the liver of STZ-induced diabetic mice compared with controls, but no significant changes in MMPE and DMPE species were determined. However, remodeling of fatty-acyl chains in the determined lipids was observed in the liver of STZ-induced diabetic mice, with reduction in 16:1 and increases in 18:2, 18:1, and 18:0 acyl chains. These results indicated the improved method to be a powerful tool to reveal the function of the PC de-novo biosynthesis pathway through methylation of PE species in biological systems.

Representative mass spectra of PC, MMPE, DMPE, and PE species present in mouse liver samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Meer G (2005) Cellular Lipidomics. EMBO J 24:3159–3165

    Article  Google Scholar 

  2. Han X, Gross RW (2005) Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of the Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom Rev 24:367–412

    Article  CAS  Google Scholar 

  3. Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine Biosynthesis and Lipoprotein Metabolism. Biochim Biophys Acta 1821:754–761

    Article  CAS  Google Scholar 

  4. Sprong H, van der Sluijs P, van Meer G (2001) How Proteins Move Lipids and Lipids Move Proteins. Nat Rev Mol Cell Biol 2:504–513

    Article  CAS  Google Scholar 

  5. Lagace TA, Ridgway ND (2013) The Role of Phospholipids in the Biological Activity and Structure of the Endoplasmic Reticulum. Biochim Biophys Acta 1833:2499–2510

    Article  CAS  Google Scholar 

  6. Vance JE, Vance DE (1985) The Role of Phosphatidylcholine Biosynthesis in the Secretion of Lipoproteins from Hepatocytes. Can J Biochem Cell Biol 63:870–881

    Article  CAS  Google Scholar 

  7. Israelsson B, Brattstrom LE, Hultberg BL (1988) Homocysteine and Myocardial Infarction. Atherosclerosis 71:227–233

    Article  CAS  Google Scholar 

  8. Wierzbicki AS (2007) Homocysteine and Cardiovascular Disease: A Review of the Evidence. Diab Vasc Dis Res 4:143–150

    Article  Google Scholar 

  9. Landgren F, Israelsson B, Lindgren A, Hultberg B, Andersson A, Brattstrom L (1995) Plasma Homocysteine in Acute Myocardial Infarction: Homocysteine-Lowering Effect of Folic Acid. J Intern Med 237:381–388

    Article  CAS  Google Scholar 

  10. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, Vance DE (2006) The Ratio of Phosphatidylcholine to Phosphatidylethanolamine Influences Membrane Integrity and Steatohepatitis. Cell Metab 3:321–331

    Article  CAS  Google Scholar 

  11. Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, Wang S, Zeisel SH (2005) Polymorphism of the Pemt Gene and Susceptibility to Nonalcoholic Fatty Liver Disease (Nafld). FASEB J 19:1266–1271

    Article  CAS  Google Scholar 

  12. da Costa KA, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH (2006) Common Genetic Polymorphisms Affect the Human Requirement for the Nutrient Choline. FASEB J 20:1336–1344

    Article  Google Scholar 

  13. Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T, Shevchenko A (2006) Lipid Profiling by Multiple Precursor and Neutral Loss Scanning Driven by the Data-Dependent Acquisition. Anal Chem 78:585–595

    Article  CAS  Google Scholar 

  14. Han X, Yang K, Cheng H, Fikes KN, Gross RW (2005) Shotgun Lipidomics of Phosphoethanolamine-Containing Lipids in Biological Samples after One-Step in Situ Derivatization. J Lipid Res 46:1548–1560

    Article  CAS  Google Scholar 

  15. Bilgin M, Markgraf DF, Duchoslav E, Knudsen J, Jensen ON, de Kroon AI, Ejsing CS (2011) Quantitative Profiling of Pe, Mmpe, Dmpe, and Pc Lipid Species by Multiple Precursor Ion Scanning: A Tool for Monitoring Pe Metabolism. Biochim Biophys Acta 1811:1081–1089

    Article  CAS  Google Scholar 

  16. Buckell M (1950) The Toxicity of Methyl Iodide: I. Preliminary Survey. Br J Ind Med 7:122–124

    CAS  Google Scholar 

  17. Chamberlain MP, Sturgess NC, Lock EA, Reed CJ (1999) Methyl Iodide Toxicity in Rat Cerebellar Granule Cells in Vitro: The Role of Glutathione. Toxicology 139:27–37

    Article  CAS  Google Scholar 

  18. Han X, Gross RW (2005) Shotgun Lipidomics: Multi-Dimensional Mass Spectrometric Analysis of Cellular Lipidomes. Expert Rev Proteomics 2:253–264

    Article  CAS  Google Scholar 

  19. Han X, Yang K, Gross RW (2012) Multi-Dimensional Mass Spectrometry-Based Shotgun Lipidomics and Novel Strategies for Lipidomic Analyses. Mass Spectrom Rev 31:134–178

    Article  CAS  Google Scholar 

  20. Han X, Abendschein DR, Kelley JG, Gross RW (2000) Diabetes-Induced Changes in Specific Lipid Molecular Species in Rat Myocardium. Biochem J 352:79–89

    Article  CAS  Google Scholar 

  21. Yang K, Cheng H, Gross RW, Han X (2009) Automated Lipid Identification and Quantification by Multi-Dimensional Mass Spectrometry-Based Shotgun Lipidomics. Anal Chem 81:4356–4368

    Article  CAS  Google Scholar 

  22. Yang K, Han X (2011) Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry - Meets a Key Challenge in Lipidomics. Metabolites 1:21–40

    Article  CAS  Google Scholar 

  23. Christie WW, Han X (2010) Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis. The Oily Press, Bridgwater

    Book  Google Scholar 

  24. Han X, Yang K, Gross RW (2008) Microfluidics-Based Electrospray Ionization Enhances Intrasource Separation of Lipid Classes and Extends Identification of Individual Molecular Species through Multi-Dimensional Mass Spectrometry: Development of an Automated High Throughput Platform for Shotgun Lipidomics. Rapid Commun Mass Spectrom 22:2115–2124

    Article  CAS  Google Scholar 

  25. Yang K, Zhao Z, Gross RW, Han X (2009) Systematic Analysis of Choline-Containing Phospholipids Using Multi-Dimensional Mass Spectrometry-Based Shotgun Lipidomics. J Chromatogr B 877:2924–2936

    Article  CAS  Google Scholar 

  26. Guo M, Gao S (2009) Degradation of Methyl Iodide in Soil: Effects of Environmental Factors. J Environ Qual 38:513–519

    Article  CAS  Google Scholar 

  27. Han X, Yang J, Cheng H, Ye H, Gross RW (2004) Towards Fingerprinting Cellular Lipidomes Directly from Biological Samples by Two-Dimensional Electrospray Ionization Mass Spectrometry. Anal Biochem 330:317–331

    Article  CAS  Google Scholar 

  28. Han RH, Wang M, Fang X, Han X (2013) Simulation of Triacylglycerol Ion Profiles: Bioinformatics for Interpretation of Triacylglycerol Biosynthesis. J Lipid Res 54:1023–1032

    Article  CAS  Google Scholar 

  29. Simoes C, Domingues P, Ferreira R, Amado F, Duarte JA, Vitorino R, Neuparth MJ, Nunes C, Rocha C, Duarte I, Domingues MR (2013) Remodeling of Liver Phospholipidomic Profile in Streptozotocin-Induced Diabetic Rats. Arch Biochem Biophys 538:95–102

    Article  CAS  Google Scholar 

  30. Yang K, Fang X, Gross RW, Han X (2011) A Practical Approach for Determination of Mass Spectral Baselines. J Am Soc Mass Spectrom 22:2090–2099

    Article  CAS  Google Scholar 

  31. Han X, Gross RW (2003) Global Analyses of Cellular Lipidomes Directly from Crude Extracts of Biological Samples by Esi Mass Spectrometry: A Bridge to Lipidomics. J Lipid Res 44:1071–1079

    Article  CAS  Google Scholar 

  32. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ, Sanyal AJ (2007) A Lipidomic Analysis of Nonalcoholic Fatty Liver Disease. Hepatology 46:1081–1090

    Article  CAS  Google Scholar 

  33. Fernando H, Bhopale KK, Kondraganti S, Kaphalia BS, Shakeel Ansari GA (2011) Lipidomic Changes in Rat Liver after Long-Term Exposure to Ethanol. Toxicol Appl Pharmacol 255:127–137

    Article  CAS  Google Scholar 

  34. Pan HJ, Lin Y, Chen YE, Vance DE, Leiter EH (2006) Adverse Hepatic and Cardiac Responses to Rosiglitazone in a New Mouse Model of Type 2 Diabetes: Relation to Dysregulated Phosphatidylcholine Metabolism. Vasc Pharmacol 45:65–71

    Article  CAS  Google Scholar 

  35. Douillet C, Bost M, Accominotti M, Borson-Chazot F, Ciavatti M (1998) Effect of Selenium and Vitamin E Supplements on Tissue Lipids, Peroxides, and Fatty Acid Distribution in Experimental Diabetes. Lipids 33:393–399

    Article  CAS  Google Scholar 

  36. Rajasekaran S, Ravi K, Sivagnanam K, Subramanian S (2006) Beneficial Effects of Aloe Vera Leaf Gel Extract on Lipid Profile Status in Rats with Streptozotocin Diabetes. Clin Exp Pharmacol Physiol 33:232–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Institute of General Medical Sciences Grant R01 GM105724 and Intramural institutional research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlin Han.

Additional information

Published in the topical collection Lipidomics with guest editor Michal Holčapek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Kim, G.H., Wei, F. et al. Improved method for quantitative analysis of methylated phosphatidylethanolamine species and its application for analysis of diabetic-mouse liver samples. Anal Bioanal Chem 407, 5021–5032 (2015). https://doi.org/10.1007/s00216-015-8534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8534-4

Keywords

Navigation