Skip to main content

Advertisement

Log in

Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multilayer artificial neural network (ANN) is used to model the reversed-phase liquid chromatography retention times of 16 selected compounds, including purines, pyrimidines and nucleosides. The analysed data, taken from literature, were collected in acetonitrile-water eluents under the application of 16 different multilinear gradients. The parameters describing the gradient profile together with solute descriptors are considered as the independent variables of an ANN-based model providing the retention time as response. Categorical variables or, alternatively, a selected set of molecular descriptors of computational origin are adopted to represent the solutes. Network training, validation and testing are performed preliminarily using data of 12, 2 and 4 gradients, respectively and successively, to investigate model performance under more severe calibration conditions, with data of 9, 2 and 7 gradients. The proposed approach allows a quite accurate prediction of retention times of the target analytes in external multilinear gradients. Categorical variables can successfully represent the target solutes when the model is called to transfer retention data from calibration to external gradients. In particular, using a five-dimensional bit string to represent the analytes, mean errors on retention times are 2 and 3 % under the most and less favourable calibration conditions, respectively. A comparable performance is observed if the categorical variables are replaced by five molecular descriptors, selected by a genetic algorithm within a large set of structural variables of computational origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Poole CF (2003) The essence of chromatography. Elsevier Science B.V., Amsterdam

    Google Scholar 

  2. Jandera P (2006) J Chromatogr A 1126:195–218

    Article  CAS  Google Scholar 

  3. Fatemi MH, Abraham MH, Poole CF (2008) J Chromatogr A 1190:241–252

    Article  CAS  Google Scholar 

  4. Bączek T, Kaliszan R (2002) J Chromatogr A 962:41–55

    Article  Google Scholar 

  5. Téllez A, Rosés M, Bosch E (2009) Anal Chem 81:9135–9145

    Article  Google Scholar 

  6. Nikitas P, Pappa-Louisi A, Papageorgiou A (2007) J Chromatogr A 1157:178–186

    Article  CAS  Google Scholar 

  7. Concha-Herrera V, Vivó-Truyols G, Torres-Lapasió JR, García-Alvarez-Coque MC (2005) J Chromatogr A 1063:79–88

    Article  CAS  Google Scholar 

  8. Ortiz-Bolsico C, Torres-Lapasió JR, García-Alvarez-Coque MC (2014) J Chromatogr A 1350:51–60

    Article  CAS  Google Scholar 

  9. De Beer M, Lynen F, Chen K, Ferguson P, Hanna-Brown M, Sandra P (2010) Anal Chem 82:1733–1743

    Article  Google Scholar 

  10. Neue UD, Kuss H-J (2010) J Chromatogr A 1217:3794–3808

    Article  CAS  Google Scholar 

  11. Héberger K (2007) J Chromatogr A 1158:273–305

    Article  Google Scholar 

  12. Loukas YL (2000) J Chromatogr A 904:119–129

    Article  CAS  Google Scholar 

  13. Put R, Vander Heyden Y (2007) Anal Chim Acta 602:164–172

    Article  CAS  Google Scholar 

  14. Cirera-Domènech E, Estrada-Tejedor R, Broto-Puig F, Teixidó J, Gassiot-Matas M, Comellas L, Lliberia JL, Méndez A, Paz-Estivill S, Delgado-Ortiz MR (2013) J Chromatogr A 1276:65–77

    Article  Google Scholar 

  15. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965–977

    Article  CAS  Google Scholar 

  16. Novotná K, Havliš J, Havel J (2005) J Chromatogr A 1096:50–57

    Article  Google Scholar 

  17. Tran ATK, Hyne RV, Pablo F, Day WR, Doble P (2007) Talanta 71:1268–1275

    Article  CAS  Google Scholar 

  18. Tham SY, Agatonovic-Kustrin S (2002) J Pharm Biomed Anal 28:581–590

    Article  CAS  Google Scholar 

  19. Golubovíc J, Protíc A, Zečević M, Otaševíc B, Mikić M, Živanović L (2012) Talanta 100:329–337

    Article  Google Scholar 

  20. Carlucci G, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 601:68–76

    Article  CAS  Google Scholar 

  21. D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F (2012) Anal Chim Acta 717:52–60

    Article  Google Scholar 

  22. D’Archivio AA, Maggi MA, Ruggieri F (2011) Anal Chim Acta 690:35–46

    Article  Google Scholar 

  23. D’Archivio AA, Maggi MA, Ruggieri F (2014) J Sep Sci 37:1930–1936

    Article  Google Scholar 

  24. Nikitas P, Pappa-Louisi A, Agrafiotou P, Mansour A (2011) J Chromatogr A 1218:5658–5663

    Article  CAS  Google Scholar 

  25. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley, Weinheim

    Google Scholar 

  26. Marini F, Bucci R, Magrì AL, Magrì AD (2008) Microchem J 88:178–185

    Article  CAS  Google Scholar 

  27. Svozil D, Kvasnička V, Pospíchal J (1997) Chemom Intell Lab Syst 39:43–62

    Article  CAS  Google Scholar 

  28. Lopez R (2012). OpenNN: Open Neural Networks Library (Version 0.9). Retrieved from http://flood.sourceforge.net

  29. Härdle W, Simar L (2003) Applied multivariate statistical analysis. Springer, Berlin

    Book  Google Scholar 

  30. Mohamadi F, Richards NG, Guida WC, Liskamp R, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467

    Article  CAS  Google Scholar 

  31. Talete srl, DRAGON 6.0 for Windows (Software for Molecular Descriptor Calculations); http://www.talete.mi.it/

  32. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Book  Google Scholar 

  33. Leardi R (ed) (2003) Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks. In: Data handling in science and technology, vol 23. Elsevier, Amsterdam

    Google Scholar 

  34. Wehrens R, Buydens LMC (1998) Trends Anal Chem 17:193–203

    Article  CAS  Google Scholar 

  35. Forina M, Lanteri S, Armanino C, Casolino C, Casale M, Oliveri P. V-PARVUS 2010. Dip. Chimica e Tecnologie Farmaceutiche ed Alimentari, University of Genova. http://www.parvus.unige.it

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Antonio D’Archivio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Archivio, A.A., Maggi, M.A. & Ruggieri, F. Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. Anal Bioanal Chem 407, 1181–1190 (2015). https://doi.org/10.1007/s00216-014-8317-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8317-3

Keywords

Navigation