Skip to main content
Log in

Lactate biosensors: current status and outlook

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Many research efforts over the last few decades have been devoted to sensing lactate as an important analytical target in clinical care, sport medicine, and food processing. Therefore, research in designing lactate sensors is no longer in its infancy and now is more directed toward viable sensors for direct applications. In this review, we provide an overview of the most immediate and relevant developments toward this end, and we discuss and assess common transduction approaches. Further, we critically describe the pros and cons of current commercial lactate sensors and envision how future sensing design may benefit from emerging new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kemp G (2005) Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle. Am J Physiol Regul Integr Comp Physiol 289(3):R895–R901

    CAS  Google Scholar 

  2. Phypers B, Pierce JT (2006) Lactate physiology in health and disease. Contin Educ Anaesth Crit Care Pain 6(3):128–132

    Google Scholar 

  3. Stanley WC, Gertz EW, Wisneski JA, Morris DL, Neese RA, Brooks GA (1985) Systemic lactate kinetics during graded exercise in man. Am J Physiol 249(6 Pt 1):E595–E602

    CAS  Google Scholar 

  4. Goodwin ML, Harris JE, Hernandez A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1(4):558–569

    Google Scholar 

  5. Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17(1):22–34

    CAS  Google Scholar 

  6. Valenza F, Aletti G, Fossali T, Chevallard G, Sacconi F, Irace M, Gattinoni L (2005) Lactate as a marker of energy failure in critically ill patients: hypothesis. Crit Care 9(6):588–593

    Google Scholar 

  7. Karlsson J, Willerson JT, Leshin SJ, Mullins CB, Mitchell JH (1975) Skeletal-muscle metabolites in patients with cardiogenic-shock or severe congestive heart failure. Scand J Clin Lab Invest 35(1):73–79

    CAS  Google Scholar 

  8. Sayeed MM, Murthy PNA (1981) Adenine nucleotide and lactate metabolism in the lung in endotoxin shock. Circ Shock 8(6):657–666

    CAS  Google Scholar 

  9. DeBacker D, Creteur J, Zhang HB, Norrenberg M, Vincent JL (1997) Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med 156(4 Pt 1):1099–1104

    CAS  Google Scholar 

  10. Kruse JA, Zaidi SA, Carlson RW (1987) Significance of blood lactate levels in critically ill patients with liver disease. Am J Med 83(1):77–82

    CAS  Google Scholar 

  11. Bellomo R (2002) Bench-to-bedside review: lactate and the kidney. Crit Care 6(4):322–326

    Google Scholar 

  12. Rimachi R, de Carvahlo FB, Orellano-Jimenez C, Cotton F, Vncent JL, De Backer D (2012) Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care 40(3):427–432

    CAS  Google Scholar 

  13. Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED (2001) Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med 27(1):74–83

    CAS  Google Scholar 

  14. Heinis AMF, Spaanderman ME, Gunnewiek JMTK, Lotgering FK (2011) Scalp blood lactate for intra-partum assessment of fetal metabolic acidosis. Acta Obstet Gynecol Scand 90(10):1107–1114

    CAS  Google Scholar 

  15. Heinis AMF, Dinnissen J, Spaanderman MEA, Lotgering FK, Gunnewiek JMTK (2011) Comparison of two point-of-care testing (POCT) devices for fetal lactate during labor. Clin Chem Lab Med 50(1):89–93

    Google Scholar 

  16. Kastendieck E, Paulick R, Martius J (1988) Lactate in fetal tissue during hypoxia; correlation to lactate, pH and base deficit in the fetal blood. Eur J Obstet Gynecol Reprod Biol 29(1):61–71

    CAS  Google Scholar 

  17. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921

    CAS  Google Scholar 

  18. Hirschhaeuser F, Sattler UGA, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925

    CAS  Google Scholar 

  19. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Invest 118(12):3835–3837

    CAS  Google Scholar 

  20. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485

    CAS  Google Scholar 

  21. Cureton EL, Kwan RO, Dozier KC, Sadjadi J, Pal JD, Victorino GP (2010) A different view of lactate in trauma patients: protecting the injured brain. J Surg Res 159(1):468–473

    CAS  Google Scholar 

  22. Goodman JC, Valadka AB, Gopinath SP, Uzura M, Robertson CS (1999) Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 27(9):1965–1973

    CAS  Google Scholar 

  23. Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, Harmon HP, Gabbert S, Petillo PA (2012) Lactate as a biomarker for sleep. Sleep 35(9):1209–1222

    Google Scholar 

  24. Kriz K, Kraft L, Krook M, Kriz D (2002) Amperometric determination of L-lactate based on entrapment of lactate oxidase on a transducer surface with a semi-permeable membrane using a SIRE technology based biosensor. Application: tomato paste and baby food J Agric Food Chem 50(12):3419–3424

    CAS  Google Scholar 

  25. Stekelenburg FK, Kant-Muermans MLT (2001) Effects of sodium lactate and other additives in a cooked ham product on sensory quality and development of a strain of Lactobacillus curvatus and Listeria monocytogenes. Int J Food Microbiol 66(3):197–203

    CAS  Google Scholar 

  26. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwwenhoek 76(1–4):317–331

    CAS  Google Scholar 

  27. Lloret A, Boido E, Lorenzo D, Medina K, Carrau F, Dellacassa E, Versini G (2002) Aroma variation in tannat wines: effect of malolactic fermentation on ethyl lactate level and its enantiomeric distribution. Ital J Food Sci 14(2):175–180

    CAS  Google Scholar 

  28. Smit NJ, Howatson G, Greenfield R (2009) Blood lactate levels as a biomarker for angling-induced stress in tigerfish Hydrocynus vittatus from the Okavango Delta, Botswana. Afr J Aquat Sci 34(3):255–259

    Google Scholar 

  29. Nikolaus N, Strehlitz B (2008) Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim Acta 160(1–2):15–55

    CAS  Google Scholar 

  30. Shinbo T, Sugiura M, Kamo N (1979) Potentiometric enzyme electrode for lactate. Anal Chem 51(1):100–104

    CAS  Google Scholar 

  31. Omole OO, Brocks DR, Nappert G, Naylor JM, Zello GA (1999) High-performance liquid chromatographic assay of (+/−)-lactic acid and its enantiomers in calf serum. J Chromatogr B: Biomed Sci Appl 727(1–2):23–29

    CAS  Google Scholar 

  32. Galbán J, Demarcos S, Castillo JR (1993) Fluorometric–enzymatic lactate determination based on enzyme cytochrome b 2 fluorescence. Anal Chem 65(21):3076–3080

    Google Scholar 

  33. Wu FQ, Huang YM, Huang CZ (2005) Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element. Biosens Bioelectron 21(3):518–522

    Google Scholar 

  34. Goh JH, Mason A, Al-Shamma'a AI, Field M, Shackcloth M, Browning P (2011) Non invasive microwave sensor for the detection of lactic acid in cerebrospinal fluid (CSF). J Phys Conf Ser 307:012017

    Google Scholar 

  35. Sartain FK, Yang X, Lowe CR (2006) Holographic lactate sensor. Anal Chem 78(16):5664–5670

    CAS  Google Scholar 

  36. Ren J, Dean Sherry A, Malloy CR (2012) Noninvasive monitoring of lactate dynamics in human forearm muscle after exhaustive exercise by 1H-magnetic resonance spectroscopy at 7 tesla. Magn Reson Med. doi:10.1002/mrm.24526

    Google Scholar 

  37. Shkil H, Stoica L, Dmytruk K, Smutok O, Gonchar M, Sibirny A, Schuhmann W (2009) Bioelectrochemical detection of L-lactate respiration using genetically modified Hansenula polymorpha yeast cells overexpressing flavocytochrome b 2. Bioelectrochemistry 76(1–2):175–179

    CAS  Google Scholar 

  38. Smutok O, Dmytruk K, Gonchar M, Sibirny A, Schuhmann W (2007) Permeabilized cells of flavocytochrome b 2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23(5):599–605

    CAS  Google Scholar 

  39. Romero MR, Ahumada F, Garay F, Baruzzi AM (2010) Amperometric biosensor for direct blood lactate detection. Anal Chem 82(13):5568–5572

    CAS  Google Scholar 

  40. Wang DL, Heller A (1993) Miniaturized flexible amperometric lactate probe. Anal Chem 65(8):1069–1073

    CAS  Google Scholar 

  41. Parra A, Casero E, Lorenzo E, Pariente F, Vazquez L (2007) Nanomechanical properties of globular proteins: lactate oxidase. Langmuir 23(5):2747–2754

    CAS  Google Scholar 

  42. Makovos EB, Liu CC (1985) Measurements of lactate concentration using lactate oxidase and an electrochemical oxygen sensor. Biotechnol Bioeng 27(2):167–170

    CAS  Google Scholar 

  43. Chen J, Jin YL (2011) Sensitive lactate determination based on acclimated mixed bacteria and palygorskite co-modified oxygen electrode. Bioelectrochemistry 80(2):151–154

    CAS  Google Scholar 

  44. Salimi A, Noorbakhsh A, Mamkhezri H, Ghavami R (2007) Electrocatalytic reduction of H2O2 and oxygen on the surface of thionin incorporated onto MWCNTs modified glassy carbon electrode: application to glucose detection. Electroanalysis 19(10):1100–1108

    CAS  Google Scholar 

  45. Cai XH, Ogorevc B, Tavcar G, Wang J (1995) Indium-tin oxide film electrode as catalytic amperometric sensor for hydrogen peroxide. Analyst 120(10):2579–2583

    CAS  Google Scholar 

  46. Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of L-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129

    CAS  Google Scholar 

  47. Agui L, Eguilaz M, Pena-Farfal C, Yanez-Sedeno P, Pingarron JM (2009) Lactate dehydrogenase biosensor based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanalysis 21(3–5):386–391

    CAS  Google Scholar 

  48. Gamero M, Pariente F, Lorenzo E, Alonso C (2010) Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens Bioelectron 25(9):2038–2044

    CAS  Google Scholar 

  49. Jena BK, Raj CR (2007) Amperometric L-lactate biosensor based on gold nanoparticles. Electroanalysis 19(7–8):816–822

    CAS  Google Scholar 

  50. Yu YY, Yang Y, Gu H, Zhou TS, Shi GY (2013) Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens Bioelectron 41:511–518

    CAS  Google Scholar 

  51. He XR, Yu JH, Ge SG, Zhang XM, Lin Q, Zhu H, Feng S, Yuan L, Huang JD (2010) Amperometric L-lactate biosensor based on sol–gel film and multi-walled carbon nanotubes/platinum nanoparticles enhancement. Chin J Anal Chem 38(1):57–61

    CAS  Google Scholar 

  52. Pereira AC, Kisner A, Tarley CRT, Kubota LT (2011) Development of a carbon paste electrode for lactate detection based on Meldola's blue adsorbed on silica gel modified with niobium oxide and lactate oxidase. Electroanalysis 23(6):1470–1477

    CAS  Google Scholar 

  53. Shakir I, Shahid M, Yang HW, Cherevko S, Chung CH, Kang DJ (2012) ɑ-MoO3 nanowire-based amperometric biosensor for l-lactate detection. J Solid State Electrochem 16(6):2197–2201

    CAS  Google Scholar 

  54. Wang YT, Bao YJ, Lou L, Li JJ, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2010) A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. Sensors 2010 I.E. 33–37

  55. Yang ML, Wang J, Li HQ, Zheng JG, Wu NQN (2008) A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 19(7):075502

    Google Scholar 

  56. Spohn U, Narasaiah D, Gorton L (1996) The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for L-lactate. Electroanalysis 8(6):507–514

    CAS  Google Scholar 

  57. Pérez S, Fàbregas E (2012) Amperometric bienzymatic biosensor for L-lactate analysis in wine and beer samples. Analyst 137(16):3854–3861

    Google Scholar 

  58. Yang HW, Kim DC, Yoo SH, Park S, Kang DJ (2012) Constructing LBL-assembled functional bio-architecture using gold nanorods for lactate detection. Mater Res Bull 47(10):3056–3060

    CAS  Google Scholar 

  59. Romero MR, Garay F, Baruzzi AM (2008) Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sens Actuators B Chem 131(2):590–595

    CAS  Google Scholar 

  60. Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011) A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroanal Chem 661(1):8–12

    CAS  Google Scholar 

  61. Rahman MM, Shiddiky MJA, Rahman MA, Shim YB (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384(1):159–165

    CAS  Google Scholar 

  62. Al-Jawadi E, Poller S, Haddad R, Schuhmann W (2012) NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers. Microchim Acta 177(3–4):405–410

    CAS  Google Scholar 

  63. Yashina EI, Borisova AV, Karyakina EE, Shchegolikhina OI, Vagin MY, Sakharov DA, Tonevitsky AG, Karyakin AA (2010) Sol–gel immobilization of lactate oxidase from organic solvent: toward the advanced lactate biosensor. Anal Chem 82(5):1601–1604

    CAS  Google Scholar 

  64. Tsuchiya M, Matsuhisa H, Hasebe Y (2012) Selective amperometric response to hydrogen peroxide at a protein-incorporated sol–gel hybrid film-modified platinum electrode. Bunseki Kagaku 61(5):425–428

    CAS  Google Scholar 

  65. Zanini VP, de Mishima BL, Solis V (2011) An amperometric biosensor based on lactate oxidase immobilized in Laponite-chitosan hydrogel on a glassy carbon electrode. Application to the analysis of L-lactate in food samples Sens Actuators B Chem 155(1):75–80

    CAS  Google Scholar 

  66. Zanini VP, de Mishima BL, Labbe P, Solis V (2010) An L-lactate amperometric enzyme electrode based on L-lactate oxidase immobilized in a Laponite gel on a glassy carbon electrode. Application to dairy products and red wine Electroanalysis 22(9):946–954

    Google Scholar 

  67. Palmisano F, Rizzi R, Centonze D, Zambonin PG (2000) Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens Bioelectron 15(9–10):531–539

    CAS  Google Scholar 

  68. Palmisano F, DeBenedetto GE, Zambonin CG (1997) Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Analyst 122(4):365–369

    CAS  Google Scholar 

  69. Parra-Alfambra AM, Casero E, Petit-Dominguez MD, Barbadillo M, Pariente F, Vazquez L, Lorenzo E (2011) New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Analyst 136(2):340–347

    CAS  Google Scholar 

  70. Lin CL, Shih CL, Chau LK (2007) Amperometric L-lactate sensor based on sol–gel processing of an enzyme-linked silicon alkoxide. Anal Chem 79(10):3757–3763

    CAS  Google Scholar 

  71. Salazar P, Martin M, O'Neill RD, Roche R, Gonzalez-Mora JL (2012) Biosensors based on Prussian blue modified carbon fibers electrodes for monitoring lactate in the extracellular space of brain tissue. Int J Electrochem Sci 7(7):5910–5926

    CAS  Google Scholar 

  72. Salazar P, Martin M, O'Neill RD, Roche R, Gonzalez-Mora JL (2012) Surfactant-promoted Prussian Blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloids Surf B Biointerfaces 92:180–189

    CAS  Google Scholar 

  73. Shimomura T, Sumiya T, Ono M, Ito T, Hanaoka T (2012) Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal Chim Acta 714:114–120

    CAS  Google Scholar 

  74. Schmitt RE, Molitor HR, Wu TS (2012) Voltammetric method for the determination of lactic acid using a carbon paste electrode modified with cobalt phthalocyanine. Int J Electrochem Sci 7(11):10835–10841

    CAS  Google Scholar 

  75. Kulys J, Wang LZ, Maksimoviene A (1993) L-Lactate oxidase electrode based on methylene green and carbon paste. Anal Chim Acta 274(1):53–58

    CAS  Google Scholar 

  76. Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola blue coimmobilized on multi-wall carbon-nanotube. Sens Actuators B Chem 124(1):269–276

    CAS  Google Scholar 

  77. Parra A, Casero E, Vazquez L, Jin J, Pariente F, Lorenzo E (2006) Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase. Langmuir 22(12):5443–5450

    CAS  Google Scholar 

  78. Serban S, El Murr N (2006) Redox-flexible NADH oxidase biosensor: a platform for various dehydrogenase bioassays and biosensors. Electrochim Acta 51(24):5143–5149

    CAS  Google Scholar 

  79. Mao LQ, Yamamoto K (2000) Amperometric on-line sensor for continuous measurement of hypoxanthine based on osmium-polyvinylpyridine gel polymer and xanthine oxidase bienzyme modified glassy carbon electrode. Anal Chim Acta 415(1–2):143–150

    CAS  Google Scholar 

  80. Marzouk SAM, Cosofret VV, Buck RP, Yang H, Cascio WE, Hassan SSM (1997) A conducting salt-based amperometric biosensor for measurement of extracellular lactate accumulation in ischemic myocardium. Anal Chem 69(14):2646–2652

    CAS  Google Scholar 

  81. Haccoun J, Piro B, Tran LD, Dang LA, Pham MC (2004) Reagentless amperometric detection of L-lactate on an enzyme-modified conducting copolymer poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-naphthoquinone). Biosens Bioelectron 19(10):1325–1329

    CAS  Google Scholar 

  82. Gajonyte R, Melvydas V, Malinauskas A (2006) Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with Baker's yeast Saccharomyces cerevisiae. Bioelectrochemistry 68(2):191–196

    Google Scholar 

  83. Piano M, Serban S, Pittson R, Drago GA, Hart JP (2010) Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola's blue-Reinecke salt, coated with lactate dehydrogenase and NAD(+). Talanta 82(1):34–37

    CAS  Google Scholar 

  84. Hamdi N, Wang JJ, Monbouquette HG (2005) Polymer films as permselective coatings for H2O2-sensing electrodes. J Electroanal Chem 581(2):258–264

    CAS  Google Scholar 

  85. Bridge K, Davis F, Collyer S, Higson SPJ (2007) Flexible ultrathin polyDVB/EVB composite membranes for the optimization of a whole blood glucose sensor. Electroanalysis 19(4):487–495

    CAS  Google Scholar 

  86. Bridge K, Davis F, Collyer SD, Higson SPJ (2007) Flexible ultrathin polyDVB/EVB composite membranes for the optimization of a lactate sensor. Electroanalysis 19(5):567–574

    CAS  Google Scholar 

  87. Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377(3):507–520

    CAS  Google Scholar 

  88. Qin C, Chen C, Xie QJ, Wang LH, He XH, Huang Y, Zhou YP, Xie FY, Yang DW, Yao SZ (2012) Amperometric enzyme electrodes of glucose and lactate based on poly(diallyldimethylammonium)-alginate-metal ion-enzyme biocomposites. Anal Chim Acta 720:49–56

    CAS  Google Scholar 

  89. Radoi A, Moscone D, Palleschi G (2010) Sensing the lactic acid in probiotic yogurts using an L-lactate biosensor coupled with a microdialysis fiber inserted in a flow analysis system. Anal Lett 43(7–8):1301–1309

    CAS  Google Scholar 

  90. Burmeister JJ, Palmer M, Gerhardt GA (2005) L-Lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens Bioelectron 20(9):1772–1779

    CAS  Google Scholar 

  91. Tao HY, Cornish VW (2002) Milestones in directed enzyme evolution. Curr Opin Chem Biol 6(6):858–864

    CAS  Google Scholar 

  92. Campas M, Prieto-Simon B, Marty JL (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20(1):3–9

    CAS  Google Scholar 

  93. Taurino I, Reiss R, Richter M, Fairhead M, Thöny-Meyer L, Micheli GD, Carrara S (2013) Comparative study of three lactate oxidases from Aerococcus viridans for biosensing applications. Electrochim Acta 93:72–79

    CAS  Google Scholar 

  94. Lin ZC, Chou JC, Sun TP, Hsiung SK (2008) Development of the potentiometric lactate biosensor based on SnO2/ITO glass electrode. Sens Lett 6(6):855–859

    CAS  Google Scholar 

  95. Ibupoto ZH, Shah SMUA, Khun K, Willander M (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 12(3):2456–2466

    CAS  Google Scholar 

  96. Diallo AK, Djeghlaf L, Mazenq L, Launay J, Sant W, Temple-Boyer P (2013) Development of pH-based ElecFET biosensors for lactate ion detection. Biosens Bioelectron 40(1):291–296

    CAS  Google Scholar 

  97. Lupu A, Valsesia A, Bretagnol F, Colpo P, Rossi F (2007) Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sensor Actuators B Chem 127(2):606–612

    CAS  Google Scholar 

  98. Khun K, Ibupoto ZH, Chey CO, Lu J, Nur O, Willander M (2013) Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor. Appl Surf Sci 268:37–43

    CAS  Google Scholar 

  99. Choi MMF (2004) Progress in enzyme-based biosensors using optical transducers. Microchim Acta 148(3–4):107–132

    CAS  Google Scholar 

  100. Broder G, Weil MH (1964) Excess lactate - index of reversibility of shock in human patients. Science 143(3613):1457–1459

    CAS  Google Scholar 

  101. Parker CA, Barnes WJ (1957) Some experiments with spectrofluorimeters and filter fluorimeters. Analyst 82(978):606–618

    CAS  Google Scholar 

  102. McComb RB, Bond LW, Burnett RW, Keech RC, Bowers GN Jr (1976) Determination of the molar absorptivity of NADH. Clin Chem 22(2):141–150

    CAS  Google Scholar 

  103. Duchen MR, Biscoe TJ (1992) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31

    CAS  Google Scholar 

  104. Wangsa J, Arnold MA (1988) Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide. Anal Chem 60(10):1080–1082

    CAS  Google Scholar 

  105. Demarcos S, Galban J, Castillo JR (1995) An enzyme fluorescence quenching method for the determination of lactate in synthetic blood serum. Anal Sci 11(2):233–238

    CAS  Google Scholar 

  106. Groegel DBM, Link M, Duerkop A, Wolfbeis OS (2011) A new fluorescent PET probe for hydrogen peroxide and its use in enzymatic assays for L-lactate and D-glucose. Chembiochem 12(18):2779–2785

    CAS  Google Scholar 

  107. Li YS, Gao XF (2007) Determination of various alcohols based on a new immobilized enzyme fluorescence capillary analysis. Anal Chim Acta 588(1):140–146

    CAS  Google Scholar 

  108. Zhao YY, Gao XF, Li YS, Ju X, Zhang J, Zheng J (2008) Determination of pyruvic acid by using enzymic fluorescence capillary analysis. Talanta 76(2):265–270

    CAS  Google Scholar 

  109. Li YS, Ju X, Gao XF, Yang W (2009) A novel immobilization enzyme lactate fluorescence capillary biosensor. Chin J Anal Chem 37(5):637–642

    CAS  Google Scholar 

  110. Wu MH, Cai HY, Xu X, Urban JPG, Cui ZF, Cui Z (2005) A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Biomed Microdevices 7(4):323–329

    CAS  Google Scholar 

  111. Wu MH, Wang JB, Taha T, Cui ZF, Urban JPG, Cui Z (2007) Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism. Biomed Microdevices 9(2):167–174

    CAS  Google Scholar 

  112. Zheng XT, Yang HB, Li CM (2010) Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem 82(12):5082–5087

    CAS  Google Scholar 

  113. Tabata M, Fukunaga C, Ohyabu M, Murachi T (1984) Highly sensitive flow injection analysis of glucose and uric acid in serum using an immobilized enzyme column and chemiluminescence. J Appl Biochem 6(4):251–258

    CAS  Google Scholar 

  114. Marquette CA, Blum LJ (1999) Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 381(1):1–10

    CAS  Google Scholar 

  115. Sharma A, Quantrill NSM (1994) Measurement of ethanol using fluorescence quenching. Spectrochim Acta A 50(6):1161–1177

    Google Scholar 

  116. Sharma A, Quantrill NSM (1994) Measurement of glucose using fluorescence quenching. Spectrochim Acta A 50(6):1179–1193

    Google Scholar 

  117. Marquette CA, Degiuli A, Blum LJ (2000) Fiberoptic biosensors based on chemiluminescent reactions. Appl Biochem Biotechnol 89(2–3):107–115

    CAS  Google Scholar 

  118. Ignatov SG, Ferguson JA, Walt DR (2001) A fiber-optic lactate sensor based on bacterial cytoplasmic membranes. Biosens Bioelectron 16(1–2):109–113

    CAS  Google Scholar 

  119. Martinez-Olmos A, Ballesta-Claver J, Palma AJ, Valencia-Miron MD, Capitan-Vallvey LF (2009) A portable luminometer with a disposable electrochemiluminescent biosensor for lactate determination. Sensors 9(10):7694–7710

    CAS  Google Scholar 

  120. Berger A, Blum LJ (1994) Enhancement of the response of a lactate oxidase/peroxidase-based fiberoptic sensor by compartmentalization of the enzyme layer. Enzyme Microb Technol 16(11):979–984

    CAS  Google Scholar 

  121. Haghighi B, Bozorgzadeh S (2011) Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 85(4):2189–2193

    CAS  Google Scholar 

  122. Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125(5):789–791

    CAS  Google Scholar 

  123. Patel NG, Erlenkotter A, Cammann K, Chemnitius GC (2000) Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis. Sensor Actuators B Chem 67(1–2):134–141

    CAS  Google Scholar 

  124. Claver JB, Miron MCV, Capitan-Vallvey LF (2009) Disposable electrochemiluminescent biosensor for lactate determination in saliva. Analyst 134(7):1423–1432

    Google Scholar 

  125. Ballesta-Claver J, Valencia-Miron MC, Capitan-Vallvey LF (2008) One-shot lactate chemiluminescent biosensor. Anal Chim Acta 629(1–2):136–144

    CAS  Google Scholar 

  126. Scheller F, Schubert F (1992) Biosensors. Techniques and instrumentation in analytical chemistry, vol 11. Elsevier, Amsterdam

    Google Scholar 

  127. Shkotova L, Goriushkina T, Tran-Minh C, Chovelon J-M, Soldatkin A, Dzyadevych S (2008) Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater Sci Eng C 28(5–6):943–948

    CAS  Google Scholar 

  128. Spehar-Deleze A, Anastasova S, Popplewell J, Vadgama P (2012) Extreme physiological state: development of tissue lactate sensor. In: Yang G-Z (ed) BSN 2012. Ninth international conference on wearable and implantable body sensor networks. IEEE Computer Society, Los Alamitos, pp 17–21

    Google Scholar 

  129. MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87(4):1483–1490

    CAS  Google Scholar 

  130. Chicharro JL, Lucia A, Perez M, Vaquero AF, Urena R (1998) Saliva composition and exercise. Sports Med 26(1):17–27

    CAS  Google Scholar 

  131. Marek EM, Volke J, Hawener I, Platen P, Muckenhoff K, Marek W (2010) Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects. J Breath Res 4(1):017105

    CAS  Google Scholar 

  132. Marek E, Mückenhoff K, Streckert HJ, Becher G, Marek W (2008) Measurements of L-lactate and H2O2 in exhaled breath condensate at rest and mild to moderate exercise in young and healthy subjects. Pneumologie 62(9):541–547

    CAS  Google Scholar 

  133. Van Haeringen NJ (1981) Clinical biochemistry of tears. Surv Ophthalmol 26(2):84–96

    Google Scholar 

  134. van Haeringen NJ, Glasius E (1977) Collection method dependent concentrations of some metabolites in human tear fluid, with special reference to glucose in hyperglycaemic conditions. Albrecht Von Graefes Arch Klin Exp Ophthalmol 202(1):1–7

    Google Scholar 

  135. Derbyshire PJ, Barr H, Davis F, Higson SPJ (2012) Lactate in human sweat: a critical review of research to the present day. J Physiol Sci 62(6):429–440

    CAS  Google Scholar 

  136. Shimojo N, Naka K, Uenoyama H, Hamamoto K, Yoshioka K, Okuda K (1993) Electrochemical assay system with single-use electrode strip for measuring lactate in whole blood. Clin Chem 39(11):2312–2314

    CAS  Google Scholar 

  137. Saunders AC, Feldman HA, Correia CE, Weinstein DA (2005) Clinical evaluation of a portable lactate meter in type I glycogen storage disease. J Inherit Metab Dis 28(5):695–701

    CAS  Google Scholar 

  138. Foghandersen N, Altura BM, Altura BT, Siggaardandersen O (1995) Composition of interstitial fluid. Clin Chem 41(10):1522–1525

    CAS  Google Scholar 

  139. Mendez J, Franklin B, Kollias J (1976) Relationship of blood and saliva lactate and pyruvate concentrations. Biomedicine 25(9):313–314

    CAS  Google Scholar 

  140. Schabmueller CG, Loppow D, Piechotta G, Schutze B, Albers J, Hintsche R (2006) Micromachined sensor for lactate monitoring in saliva. Biosens Bioelectron 21(9):1770–1776

    CAS  Google Scholar 

  141. Finsterer J, Mittendorfer B, Neuhuber W, Loscher WN (2002) Influence of disposable, concentric needle electrodes on muscle enzyme and lactate serum levels. J Electromyogr Kinesiol 12(4):329–337

    Google Scholar 

  142. Yang Q, Atanasov P, Wilkins E (1999) Needle-type lactate biosensor. Biosens Bioelectron 14(2):203–210

    CAS  Google Scholar 

  143. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    CAS  Google Scholar 

  144. Schaupp L, Ellmerer M, Brunner GA, Wutte A, Sendlhofer G, Trajanoski Z, Skrabal F, Pieber TR, Wach P (1999) Direct access to interstitial fluid in adipose tissue in humans by use of open-flow microperfusion. Am J Physiol 276(2):E401–E408

    CAS  Google Scholar 

  145. Maddocks S, Setchell BP (1988) The composition of extracellular interstitial fluid collected with a push-pull cannula from the testes of adult rats. J Physiol 407:363–372

    CAS  Google Scholar 

  146. Rong ZM, Leitao E, Popplewell J, Alp B, Vadgama P (2008) Needle enzyme electrode for lactate measurement in vivo. IEEE Sens J 8(1–2):113–120

    CAS  Google Scholar 

  147. Shimomura T, Sumiya T, Ono M, Itoh T, Hanaoka T (2012) An electrochemical biosensor for the determination of lactic acid in expiration. Procedia Chem 6:46–51

    CAS  Google Scholar 

  148. Tekus E, Kaj M, Szabo E, Szenasi NL, Kerepesi I, Figler M, Gabriel R, Wilhelm M (2012) Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biol Hung 63:89–98

    Google Scholar 

  149. Thomas N, Lahdesmaki I, Parviz BA (2012) A contact lens with an integrated lactate sensor. Sensor Actuators B Chem 162(1):128–134

    CAS  Google Scholar 

  150. Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566

    CAS  Google Scholar 

  151. Yang YL, Chuang MC, Lou SL, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135(6):1230–1234

    CAS  Google Scholar 

  152. Yeo WH, Kim YS, Lee J, Ameen A, Shi L, Li M, Wang S, Ma R, Jin SH, Kang Z (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv Mater 25(20):2773–2778

    CAS  Google Scholar 

  153. Kim DH, Lu NS, Ma R, Kim YS, Kim RH, Wang SD, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu LZ, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang YG, Coleman T, Rogers JA (2011) Epidermal electronics. Science 333(6044):838–843

    CAS  Google Scholar 

  154. Trzebinski J, Sharma S, Moniz ARB, Michelakis K, Zhang YY, Cass AEG (2012) Microfluidic device to investigate factors affecting performance in biosensors designed for transdermal applications. Lab Chip 12(2):348–352

    CAS  Google Scholar 

  155. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826

    CAS  Google Scholar 

  156. Nie ZH, Deiss F, Liu XY, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10(22):3163–3169

    CAS  Google Scholar 

  157. Yang XX, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12(2):274–280

    CAS  Google Scholar 

  158. Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv 3(24):9258–9263

    CAS  Google Scholar 

  159. Labroo P, Cui Y (2013) Electrical, enzymatic graphene biosensing of 5-aminosalicylic acid. Analyst 138(5):1325–1328

    CAS  Google Scholar 

  160. Labroo P, Cui Y (2012) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856

    Google Scholar 

  161. De Rossi D (2007) Electronic textiles: a logical step. Nat Mater 6(5):328–329

    Google Scholar 

  162. Yang Y-L, Chuang M-C, Lou S-L, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135(6):1230–1234

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza Rassaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassaei, L., Olthuis, W., Tsujimura, S. et al. Lactate biosensors: current status and outlook. Anal Bioanal Chem 406, 123–137 (2014). https://doi.org/10.1007/s00216-013-7307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7307-1

Keywords

Navigation