Skip to main content
Log in

Quantitative structure/eluent–retention relationships in reversed-phase high-performance liquid chromatography based on the solvatochromic method

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Some predictive approaches aimed at modelling the combined effect of solute molecular structure and mobile phase composition on retention in reversed-phase high-performance chromatography (RP-HPLC) have been developed in the literature. These models are established for a given binary eluent (normally acetonitrile–water or methanol–water) by non-linear (curvilinear or artificial neural network) regression assuming as the mobile phase descriptor the volume fraction φ of the organic modifier. In the present investigation, we propose a model applicable simultaneously to acetonitrile–water and methanol–water eluents. To this end, the Kamlet-Taft solvatochromic descriptors of the eluent and the solvatochromic descriptors of the analytes are considered as the input variables of a multi-layer artificial neural network (ANN) providing the solute retention as the response. This approach is applied to a set of 31 molecules analyzed with five different columns in the φ range 20–70 % at 10 % steps for both acetonitrile- and methanol-containing mobile phases. For each column, an ANN-based model is built using retention data of 25 molecules selected by the Kennard-Stones algorithm while retention data of the unselected six solutes are considered in the final evaluation of predictive performance of the trained network. To test cross-eluent prediction, the network optimized for a given column was successively trained with data collected in eight out of 12 eluents and applied to deduce retention in the four remaining mobile phases. The results reveal that RP-HPLC behavior of external solutes is quite accurately modelled in the whole explored composition range of acetonitrile– and methanol–water mobile phases. Moreover, the model exhibits a promising capability of deducing retention of external solutes even in unknown eluents.

Quantitative structure/eluent–retention relationship established by artificial neural network regression

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nikitas P, Pappa-Louisi A (2009) J Chromatogr A 1216:1737–1755

    Article  CAS  Google Scholar 

  2. Siouffi AM, Phan-Tan-Luu R (2000) J Chromatogr A 892:75–106

    Article  CAS  Google Scholar 

  3. García-Álvarez-Coque MC, Torres-Lapasió JR, Baeza-Baeza JJ (2006) Anal Chim Acta 579:125–145

    Article  Google Scholar 

  4. Héberger K (2007) J Chromatogr A 1158:273–305

    Article  Google Scholar 

  5. Kaliszan R (2007) Chem Rev 107:3212–3246

    Article  CAS  Google Scholar 

  6. Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194

    Article  CAS  Google Scholar 

  7. Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47

    Article  CAS  Google Scholar 

  8. Kamlet MJ, Taft RW (1976) J Am Chem Soc 98:377–383

    Article  CAS  Google Scholar 

  9. Taft RW, Kamlet MJ (1976) J Am Chem Soc 98:2886–2894

    Article  CAS  Google Scholar 

  10. Kamlet MJ, Abboud JL, Taft RW (1977) J Am Chem Soc 99:6027–6038

    Article  CAS  Google Scholar 

  11. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  12. Wang A, Tan LC, Carr PW (1999) J Chromatogr A 848:21–37

    Article  CAS  Google Scholar 

  13. Torres-Lapasió JR, Ruiz-Ángel MJ, García-Álvarez-Coque MC (2007) J Chromatogr A 1166:85–96

    Article  Google Scholar 

  14. Tham SY, Agatonovic-Kustrin S (2002) J Pharm Biomed Anal 28:581–590

    Article  CAS  Google Scholar 

  15. Fatemi MH, Abraham MH, Poole CF (2008) J Chromatogr A 1190:241–252

    Article  CAS  Google Scholar 

  16. D’Archivio AA, Maggi MA, Ruggieri F (2011) Anal Chim Acta 690:35–46

    Article  Google Scholar 

  17. Carlucci G, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 601:68–76

    Article  CAS  Google Scholar 

  18. Aschi M, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 582:235–242

    Article  CAS  Google Scholar 

  19. Lu H, Rutan SC (1996) Anal Chem 68:1387–1393

    Article  CAS  Google Scholar 

  20. Lu H, Rutan SC (1999) Anal Chim Acta 388:345–352

    Article  CAS  Google Scholar 

  21. Cheong WJ, Carr PW (1989) Anal Chem 61:1524–1529

    Article  CAS  Google Scholar 

  22. Barbosa J, Toro I, Sanz-Nebot V (1997) Anal Chim Acta 347:295–304

    Article  CAS  Google Scholar 

  23. Marqués I, Fonrodona G, Butí S, Barbosa J (1999) Trends Anal Chem 18:472–479

    Article  Google Scholar 

  24. Nigam S, de Juan A, Cui V, Rutan SC (1999) Anal Chem 71:5225–5234

    Article  CAS  Google Scholar 

  25. Rabouan S, Prognon P, Barthes D (1999) Anal Sci 15:1191–1197

    Article  CAS  Google Scholar 

  26. Barbosa J, Bergés R, Sanz-Nebot V (1996) J Chromatogr A 719:27–36

    Article  CAS  Google Scholar 

  27. Barbosa J, Sanz-Nebot V, Toro I (1996) J Chromatogr A 725:249–260

    Article  CAS  Google Scholar 

  28. Hemmateenejad B, Shamsipur M, Safavi A, Sharghi H, Amiri AA (2008) Talanta 77:351–359

    Article  CAS  Google Scholar 

  29. Amiri AA, Hemmateenejad B, Safavi A, Sharghi H, Salimi Beni AR, Shamsipur M (2007) Anal Chim Acta 605:11–19

    Article  CAS  Google Scholar 

  30. D’Archivio AA, Ruggieri F, Mazzeo P, Tettamanti E (2007) Anal Chim Acta 593:140–151

    Article  Google Scholar 

  31. Sándi Á, Szepesy L (1999) J Chromatogr A 845:113–131

    Article  Google Scholar 

  32. Sándi Á, Nagy M, Szepesy L (2000) J Chromatogr A 893:215–234

    Article  Google Scholar 

  33. Kennard RW, Stone LA (1969) Technometrics 11:137–148

    Article  Google Scholar 

  34. Andries JPM, Claessens HA, Vander Heyden Y, Buydens LMC (2009) Anal Chim Acta 652:180–188

    Article  CAS  Google Scholar 

  35. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  36. Marini F, Bucci R, Magrì AL, Magrì AD (2008) Microchem J 88:178–185

    Article  CAS  Google Scholar 

  37. Derks EPPA, Buydens LMC (1998) Chemom Intell Lab Syst 41:171–184

    Article  CAS  Google Scholar 

  38. Copyright ©1996-2001 JavaNNS Group, Wilhelm-Schickard-Institute for Computer Science (WSI), University of Tübingen

  39. Torres-Lapasió JR, García-Álvarez-Coque MC, Rosés M, Bosch E, Zissimos AM, Abraham MH (2004) Anal Chim Acta 515:209–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Antonio D’Archivio.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Archivio, A.A., Maggi, M.A. & Ruggieri, F. Quantitative structure/eluent–retention relationships in reversed-phase high-performance liquid chromatography based on the solvatochromic method. Anal Bioanal Chem 405, 755–766 (2013). https://doi.org/10.1007/s00216-012-6191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6191-4

Keywords

Navigation