Skip to main content
Log in

Detection and mechanistic investigation of halogenated benzoquinone induced DNA damage by photoelectrochemical DNA sensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Halogenated phenols are widely used as biocides and are considered to be possibly carcinogenic to humans. In this report, a previously developed photoelectrochemical DNA sensor was employed to investigate DNA damage induced by tetra-halogenated quinones, the in vivo metabolites of halogenated phenols. The sensor surface was composed of a double-stranded DNA film assembled on a SnO2 semiconductor electrode. A DNA intercalator, Ru(bpy)2(dppz)2+, was allowed to bind to the DNA film and produce photocurrent upon light irradiation. After the DNA film was exposed to 300 μM tetrafluoro-1,4-benzoquinone (TFBQ), the photocurrent dropped by 20%. In a mixture of 300 μM TFBQ and 2 mM H2O2, the signal dropped by 40%. The signal reduction indicates less binding of Ru(bpy)2(dppz)2+ due to structural damage of ds-DNA in the film. Similar results were obtained with tetra-1,4-chlorobenzoquinone (TCBQ), although the signal was not reduced as much as TFBQ. Fluorescence measurement showed that TFBQ/H2O2 generated more hydroxyl radicals than TCBQ/H2O2. Gel electrophoresis proved that the two benzoquinones produced DNA strand breaks together with H2O2, but not by themselves. Using the photoelectrochemical sensor, it was also found that TCBQ covalently bound with DNA did not produce additional oxidative damage in the presence of H2O2. The combined photoelectrochemistry, gel electrophoresis, and fluorescence data revealed distinctive differences between TFBQ and TCBQ in terms of DNA adduct formation and hydroxyl radical generation.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlborg UG, Thunberg T (1980) Crit Rev Toxicol 7:1–35

    Article  CAS  Google Scholar 

  2. Ramamoorthy S, Ramamoorthy S (1997) Chlorinated organic compounds in the environment. CRC, Boca Raton

    Google Scholar 

  3. Environmental Protection Agency Working Group (1980) Ambient water quality criteria for chlorinated phenols. Environmental Protection Agency, Washington DC

    Google Scholar 

  4. International Agency for Research on Cancer (1991) France, Lyon

  5. Seiler JP (1991) Mutat Res 257:27–47

    CAS  Google Scholar 

  6. Sackmauerova-Veningerova M, Uhnak J, Szokolay A, Kocan A (1981) J Chromatogr 205:194–198

    Article  CAS  Google Scholar 

  7. Tsai CH, Lin PH, Waidyanatha S, Rappaport SM (2001) Chem Biol Interact 134:55–71

    Article  CAS  Google Scholar 

  8. Lin P-H, Nakamura J, Yamaguchi S, Upton PB, La DK, Swenberg JA (2001) Carcinogenesis 22:627–634

    Article  CAS  Google Scholar 

  9. Lin P-H, Nakamura J, Yamaguchi S, La DK, Upton PB, Swenberg JA (2001) Carcinogenesis 22:635–639

    Article  CAS  Google Scholar 

  10. Lin P-H, La DK, Upton PB, Swenberg JA (2002) Carcinogenesis 23:365–369

    Article  CAS  Google Scholar 

  11. Nguyen TN, Bertagnolli AB, Villalta PW, Buhlmann P, Sturla SJ (2005) Chem Res Toxicol 18:1770–1776

    Article  CAS  Google Scholar 

  12. Dai J, Sloat AL, Wright MW, Manderville RA (2005) Chem Res Toxicol 18:771–779

    Article  CAS  Google Scholar 

  13. Zhu B-Z, Kitrossky N, Chevion M (2000) Biochem Biophys Res Commun 270:942–946

    Article  CAS  Google Scholar 

  14. Zhu B-Z, Zhao HT, Kalyanaraman B, Frei B (2002) Free Radic Biol Med 32:465–473

    Article  CAS  Google Scholar 

  15. Zhu B-Z, Kalyanaraman B, Jiang G-B (2007) Proc Natl Acad Sci USA 104:17575–17578

    Article  CAS  Google Scholar 

  16. Carrizo D, Grimalt JO, Fito NR, Torrent M, Sunyer J (2008) Ecotoxicol Environ Saf 71:260–266

    Article  CAS  Google Scholar 

  17. Choi SH, Gu MB (2003) Anal Chim Acta 481:229–238

    Article  CAS  Google Scholar 

  18. Chen J, Jiang J, Zhang F, Yu H, Zhang J (2004) Cell Boil Toxicol 20:183–196

    Article  Google Scholar 

  19. Vaidyanathan VG, Villalta PW, Sturla SJ (2007) Chem Res Toxicol 20:913–919

    Article  CAS  Google Scholar 

  20. Pfeifer GP (1996) Technologies for detection of DNA damage and mutations. Plenum, New York

    Google Scholar 

  21. Liang MM, Guo L-H (2007) Environ Sci Technol 41:658–664

    Article  CAS  Google Scholar 

  22. Jia SP, Liang MM, Guo L-H (2008) J Phys Chem B 112:4461–4464

    Article  CAS  Google Scholar 

  23. Liang MM, Jia SP, Zhu S-C, Guo L-H (2008) Environ Sci Technol 42:635–639

    Article  CAS  Google Scholar 

  24. Musumeci S, Rizzarelli FS, Sammartano S, Bonomo RP (1973) Inorg Chim Acta 7:660–662

    Article  CAS  Google Scholar 

  25. Edmond A, Abdulrazzak H (1990) J Chem Soc Dalton Trans 1841–1845

  26. Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  27. Wei MY, Guo L-H, Chen H (2006) Microchim Acta 155:409–414

    Article  CAS  Google Scholar 

  28. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford Univ, New York

    Google Scholar 

  29. Manevich Y, Held KD, Biaglow JE (1997) Radia Res 148:580–591

    Article  CAS  Google Scholar 

  30. Makrigiorgos GM, Baranowska-Kortylewicz J, Bump E, Sahu SK, Berman RM, Kassis AI (1995) Free Radic Biol Med 18:669–678

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (grant number 20825519, 20921063, 20890112) and the National Hi-Tech Research and Development Program of China (2006AA06Z422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Hong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., Zhu, BZ. & Guo, LH. Detection and mechanistic investigation of halogenated benzoquinone induced DNA damage by photoelectrochemical DNA sensor. Anal Bioanal Chem 397, 2395–2400 (2010). https://doi.org/10.1007/s00216-010-3796-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3796-3

Keywords

Navigation