Skip to main content
Log in

Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The critical importance of the junction between touching or closely adjacent Ag nanoparticles associated with single-molecule sensitivity (SMS) in surface-enhanced Raman scattering (SERS) was confirmed via the following observations: (1) an additional peak is observed in elastic scattering only for the SERS-active state, which originated from absorption of adsorbates, (2) local- and far-field evaluation using a finite difference time domain method could reproduce this extra peak and anticipate the significantly enhanced field even inside the adsorbates sitting at the junction through an increased coupling of the localized surface plasmons, and (3) in addition to enhanced fluorescence of adsorbed dye, an inelastic scattering peak was observed and attributed to the metal surface electron. Concerning the chemical enhancement in SERS, Cl anions activate the Ag-Cl-R6G (rhodamine) samples by inducing intrinsic electronic interaction between Ag and R6G molecules. This electronic interaction is irreversibly quenched by the addition of thiosulfate anions which dissolve Ag+ cations while the electromagnetic (EM) effect remains intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143–1212

    Article  CAS  Google Scholar 

  2. Kerker M (1990) Surface enhanced Raman scattering, SPIE, vol MS10

  3. Krug JT, Wang GD, Emory SR, Nie S (1999) J Am Chem Soc 121:9208–9214

    Article  CAS  Google Scholar 

  4. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957–2975

    Article  CAS  Google Scholar 

  5. Xu H, Aizpurua J, Käll M, Apell P (2000) Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  6. Michaels M, Nirmal M, Brus LE (2000) J Phys Chem B 104:11965–11971

    Article  CAS  Google Scholar 

  7. Maruyama Y, Ishikawa M, Futamata M (2001) Chem Lett 30:834–835

    Article  Google Scholar 

  8. Emory SR, Nie S (1998) J Phys Chem B 102:493–497

    Article  CAS  Google Scholar 

  9. Doering WE, Nie S (2003) Anal Chem 75:6171–6176

    Article  CAS  Google Scholar 

  10. Itoh T, Hashimoto K, Biju V, Ishikawa M, Wood BR, Ozaki Y (2006) J Phys Chem B110:9579

    Google Scholar 

  11. Itoh T, Biju V, Ishikawa M, Kikkawa Y, Hashimoto K, Ikehata A, Ozaki Y (2006) J Chem Phys 124:134708

    Article  CAS  Google Scholar 

  12. Le Ru EC, Meyer M, Etchegoin PG (2006) J Phys Chem B110:1944–1948

    Google Scholar 

  13. Goulet PJG, Pieczonka NPW, Aroca RF (2005) J Raman Spectrosc 36:574–580

    Article  CAS  Google Scholar 

  14. Constantino CJL, Lemma T, Antunes PA, Aroca R (2002) Spectrochim Acta A58:403–409

    Google Scholar 

  15. Otto A (2006) J Raman Spectrosc 37:937–947

    Article  CAS  Google Scholar 

  16. Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B107:9964–9972

    Google Scholar 

  17. Hildebrandt P, Stockburger M (1984) J Phys Chem 88:5935–5944

    Article  CAS  Google Scholar 

  18. Nie S, Emory SR (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  19. Sharaabi Y, Shegai T, Haran G (2005) Chem Phys 318:44–49

    Article  CAS  Google Scholar 

  20. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dassari RP, Feld MS (1997) Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  21. Maher RC, Etchegoin PG, Le Ru EC, Cohen LF (2006) J Phys Chem B110:11757–11760

    Google Scholar 

  22. Felidj N, Tuong SL, Aubard J, Levi G, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2004) J Chem Phys 120:7141–7146

    Article  CAS  Google Scholar 

  23. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Chem Phys Lett 41:1–6

    Article  Google Scholar 

  24. Futamata M, Maruyama Y, Ishikawa M (2003) J Phys Chem B107:7607–7617

    Google Scholar 

  25. Yamaguchi Y, Maruyama Y, Ishikawa M, Futamata M (2005) J Kor Phys Soc 47:S56–S62

    CAS  Google Scholar 

  26. Genov DA, Sarychev AK, Schalaev VM, Wei A (2004) Nano Lett 4:153–158

    Article  CAS  Google Scholar 

  27. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van Duyne RP (2006) Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  28. Lee PC, Meisel DP (1982) J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  29. Futamata M, Maruyama Y, Ishikawa M (2002) Vibrational Spectrosc 30:17–23

    Article  CAS  Google Scholar 

  30. Kahn I, Cunnigham D, Lazar S, Graham D, Smith WE, McComb DW (2006) Faraday Discuss 132:171–178

    Article  CAS  Google Scholar 

  31. Kudelski A, Pettinger B (2000) Chem Phys Lett 321:356–362

    Article  CAS  Google Scholar 

  32. Weiss A, Haran G (2001) J Phys Chem B 105:12348–12354

    Article  CAS  Google Scholar 

  33. Haran G (2004) Israel J Chem 44:385–390

    Article  CAS  Google Scholar 

  34. Shegai TO, Haran G (2006) J Phys Chem B110:2459–2461

    Google Scholar 

  35. Osborne MA, Balasubramanian S, Furey WS, Klenerman D (1998) J Phys Chem 102:3160–3167

    CAS  Google Scholar 

  36. Xu H, Käll M (2002) Phys Rev Lett 89:246802-1–246802-4

    Article  CAS  Google Scholar 

  37. Svedberg F, Käll M (2006) Faraday Discuss 132:35–44

    Article  CAS  Google Scholar 

  38. Yoshikawa H, Ihama T, Itoh T, Ozaki Y, Masuhara H (2005) Proc SPIE 5930_27:1–8

    Google Scholar 

  39. Maruyama Y, Futamata M (2004) J Phys Chem B108:673–678

    Google Scholar 

  40. Futamata M, Maruyama Y, Ishikawa M (2004) J Phys Chem B108:13119–13127

    Google Scholar 

  41. Craighead HG, Glass AM (1981) Opt Lett 6:248–250

    Article  CAS  Google Scholar 

  42. Garoff S, Weitz DA, Gramila TJ, Hanson CD (1981) Opt Lett 6:245–247

    CAS  Google Scholar 

  43. Futamata M, Maruyama Y (2005) J Mol Struct 735–736:75–84

    Article  CAS  Google Scholar 

  44. Johansson P (1998) Phys Rev B 58:10823–10834

    Article  CAS  Google Scholar 

  45. Otto A (2001) Phys Stat Sol A 188:1455–1470

    Article  CAS  Google Scholar 

  46. Otto A, Bruckbauer A, Chen YX (2003) J Mol Struct 661–662:501–514

    Article  CAS  Google Scholar 

  47. Maruyama Y, Futamata M (2005) Chem Phys Lett 412:65–70

    Article  CAS  Google Scholar 

  48. Maruyama Y, Futamata M (2005) J Raman Spectrosc 36:581–592

    Article  CAS  Google Scholar 

  49. Meguro K, Sakamoto K, Arafune R, Satoh M, Ushioda S (2002) Phys Rev B 65:165405–165408

    Article  CAS  Google Scholar 

  50. Fujita D, Ohgi T, Deng W-L, Ishige K, Okamoto T, Yokoyama S, Kamikado T, Mashiko S (2001) Surf Sci 493:702–707

    Article  CAS  Google Scholar 

  51. Futamata M, Maruyama Y, Ishikawa M (2004) Vibrational Spectrosc 35:121–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported in part by Grant-in-Aid for Scientific Research (B) 17350013 by Japan Society for the Promotion of Science (JSPS) and by Core Research for Evolutional Science and Technology (CREST) project in the Japan Science and Technology Agency (JST). We thank Dr. Mitsuru Ishikawa (AIST) for collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Futamata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futamata, M., Maruyama, Y. Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering. Anal Bioanal Chem 388, 89–102 (2007). https://doi.org/10.1007/s00216-007-1183-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1183-5

Keywords

Navigation