Skip to main content
Log in

A rapid analytical method for predicting the oxygen demand of wastewater

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV–Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190–350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. APHA-AWWA-WEF, Washington, DC

  2. Domini C, Hidalgo M, Marken F, Canals A (2006) Anal Chim Acta 561:210–217

    Article  CAS  Google Scholar 

  3. Cuesta A, Todoli J, Mora J, Canals A (1998) Anal Chim Acta 372:399–409

    Article  CAS  Google Scholar 

  4. Cuesta A, Todoli J, Canals A (1996) Spectrochim Acta Part B 51:1791–1800

    Article  Google Scholar 

  5. Hu Z, Chandran K, Smets B, Grasso D (2002) Water Res 36:617–624

    Article  CAS  Google Scholar 

  6. Li B, Zhang Z, Wang J, Xu C (2003) Talanta 61:651–658

    Article  CAS  Google Scholar 

  7. Zhang S, Jiang D, Zhao H (2006) Environ Sci Technol 40:2363–2368

    Article  CAS  Google Scholar 

  8. Li J, Zheng L, Li L, Shi G, Xian Y, Jin L (2006) Electroanal 18:1014–1018

    Article  CAS  Google Scholar 

  9. Brookman S (1997) Water Res 32:372–374

    Article  Google Scholar 

  10. Bourgeois W, Burgess J, Stuetz R (2001) J Chem Technol Biot 76:337–348

    Article  CAS  Google Scholar 

  11. Charef A, Ghauch A, Baussand P, Martin-Bouyer M (2000) Measurement 28:219–224

    Article  Google Scholar 

  12. Chevalier L, Irwin C, Craddock J (2002) Adv Environ Res 6:369–375

    Article  CAS  Google Scholar 

  13. Dobbs R, Wise R, Dean R (1972) Water Res 6:1173–1180

    Article  CAS  Google Scholar 

  14. Edwards C, Cresser M (1987) Water Res 21:49–56

    Article  CAS  Google Scholar 

  15. Filho H, Galvo R, Araujo M, da Silva E, Saldanha T, Jose G, Pasquini C, Milton R, Rohwedder J (2004) Chemometr Intell Lab 72:83–91

    Article  CAS  Google Scholar 

  16. Fogelman S, Blumenstein M, Zhao H (2006) Neural Comput Appl 15:197–203

    Article  Google Scholar 

  17. Khorassani H, Bitar H, Thomas O (1999) Wat Sci Tech 39:77–82

    Article  Google Scholar 

  18. Markva M (1983) Water Res 17:231–235

    Article  Google Scholar 

  19. Markva M (1971) Wasserwirt-Wassertech 21:280–284

    Google Scholar 

  20. Masmoudi R (1999) TAPPI J 82:111–119

    CAS  Google Scholar 

  21. Reynolds D, Ahmad S (1997) Water Res 31:2012–2018

    Article  CAS  Google Scholar 

  22. Thomas O, Theraulaz F, Agnel C, Suryani S (1996) Environ Technol 17:251–261

    Article  CAS  Google Scholar 

  23. Ahmad S, Reynolds D (1999) Water Res 33:2069–2074

    Article  CAS  Google Scholar 

  24. Dahlen J, Backstorm M, Hagberg J, Pettersson H (2000) Chemosphere 40:71–77

    Article  CAS  Google Scholar 

  25. Rumelhart D, Hinton G, Williams R (1996) Learning internal representations by error propagation, in parallel distributed processing: explorations in the microstructures of cognition. MIT Press, Cambridge, MA

    Google Scholar 

  26. Tarassenko T (1998) A guide to neural computing applications. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoshana Fogelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogelman, S., Zhao, H. & Blumenstein, M. A rapid analytical method for predicting the oxygen demand of wastewater. Anal Bioanal Chem 386, 1773–1779 (2006). https://doi.org/10.1007/s00216-006-0817-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0817-3

Keywords

Navigation