Skip to main content
Log in

Simultaneous determination of DTPA, EDTA, and NTA by UV–visible spectrometry and HPLC

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, UV–visible spectrophotometry (UV–Vis) and high-performance liquid chromatography (HPLC) were used for simultaneous analysis of chelating agents diethylenetriamine pentaacetic acid (DTPA), ethylenediamine tetraacetic acid (EDTA), and nitrilotriacetic acid (NTA), as their metal chelates in dishwashing detergents, natural waters, and pulp mill water. The total amounts of the chelating agents in dishwashing detergents were verified by potentiometric titration with Fe(III) solution. Nickel(II) chelates were determined by UV–Vis and iron(III)chelates by HPLC and titration. Recoveries of DTPA, EDTA, and NTA from a standard mixture of analytes by UV–Vis were 107±7, 101±12 and 94±13%, respectively, and the recovery of the total amount of complexing agents was 99±4%. The limits of detection for DTPA, EDTA, and NTA were 667, 324, and 739 μmol L−1, respectively. In HPLC measurements the optimized mobile phase contained 0.03 mol L−1 sodium acetate, 0.002 mol L−1 tetrabutylammonium bromide, and 5% methanol at pH 3.15 and the detection was by UV–Vis detection at 254 nm. All three complexing agents could be separated from each other in a simultaneous analysis in less than 5 min. The limits of detection were 0.34, 0.27, and 0.62 μmol L−1 for DTPA, EDTA, and NTA, respectively. The total amounts of the analytes measured in the dishwashing detergents by the three techniques were found to be highly comparable (ANOVA: F=0.04, P=0.96). R2 values were 0.99 for EDTA, 0.99 for NTA, and 0.99 for all the results when UV–Vis and HPLC determinations were compared using regression lines. The UV–Vis and HPLC methods were proved to be viable also for analyses of natural and pulp mill waters. The absence of matrix interferences was verified by the standard addition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ye L, Lucy CA (1995) Anal Chem 67:2534–2538

    CAS  Google Scholar 

  2. Hart R (1980) Soap, Cosmet Chem Spec 74:39–42

    Google Scholar 

  3. Dudzińska M, Montusiewicz A (1996) Chem Prot Environ 2; Proceedings of the International Conference, Plenum Press, New York, pp 243–249

  4. Hart R (1986) Soap, Cosmet Chem Spec 48:38–41

    Google Scholar 

  5. Schaffner C, Giger W (1984) J Chromatogr 312:413–421

    CAS  Google Scholar 

  6. Loyaux-Lawniczak S, Douch J, Behra P (1999) Fresenius J Anal Chem 364:727–731

    CAS  Google Scholar 

  7. Kari F, Giger W (1996) Water Res 30(1):122–134

    CAS  Google Scholar 

  8. Alder AC, Siegrist H, Gujer W, Giger W (1990) Water Res 34(6):733–742

    Article  Google Scholar 

  9. Sýkora V, Pitter P, Bittnerová I, Lederer T (2001) Water Res 35(8):2010–2016

    PubMed  Google Scholar 

  10. Bucheli-Witschel M, Egli T (2001) FEMS Microbiol Rev 25:69–106

    CAS  PubMed  Google Scholar 

  11. Lee H-B, Peart TE, Kaiser KLE (1996) J Chromatogr A 738:91–99

    CAS  Google Scholar 

  12. Nowack B (2002) Environ Sci Technol 36(19):4009–4016

    CAS  PubMed  Google Scholar 

  13. Randt C, Wittlinger R, Merz W (1993) Fresenius J Anal Chem 346:728–731

    CAS  Google Scholar 

  14. Parkash R, Bansal R, Rehani SK, Dixit S (1998) Talanta 46:1573–1576

    CAS  Google Scholar 

  15. Voulgaropoulos A, Valenta P, Nürnberg HW (1984) Fresenius Z Anal Chem 317:367–371

    CAS  Google Scholar 

  16. Wen M, Peng L, Yin C, Wang C (1998) S Afr J Chem 51(4):171–173

    CAS  Google Scholar 

  17. Bürgisser CS, Stone AT (1997) Environ Sci Technol 31(9):2656–2664

    Article  Google Scholar 

  18. Sillanpää M, Sihvonen M-L (1997) Talanta 44:1487–1497

    Article  Google Scholar 

  19. Bedsworth WW, Sedlak DL (1999) Environ Sci Technol 33(6):926–931

    CAS  Google Scholar 

  20. Geschke R, Zehringer M (1997) Fresenius J Anal Chem 357:773–776

    CAS  Google Scholar 

  21. Chinnick CCT (1981) Analyst 106:1203–1207

    CAS  Google Scholar 

  22. Virtapohja J, Alén R (1999) Chemosphere 38(1):143–154

    CAS  PubMed  Google Scholar 

  23. Harmsen J, van den Toorn A (1982) J Chromatogr 249:379–384

    CAS  Google Scholar 

  24. Hernández-Apaolaza L, Barak P, Lucena JJ (1997) J Chromatogr A 789:453–460

    Article  Google Scholar 

  25. Jen J-F, Chen C-S (1992) Anal Chim Acta 270:55–61

    CAS  Google Scholar 

  26. Yamaguchi A, Toda A, Ohzeki K, Kambara T (1983) Bull Chem Soc Jpn 56:2949–2951

    CAS  Google Scholar 

  27. Nowack B, Kari FG, Hilger SU, Sigg L (1996) Anal Chem 68:561–566

    CAS  Google Scholar 

  28. Dai J, Helz GR (1988) Anal Chem 60:301–305

    CAS  Google Scholar 

  29. Inman EL, Clemens RL, Olsen BA (1990) J Pharma Biomed Anal 8(6):513–520

    CAS  Google Scholar 

  30. Parkes DG, Caruso MG, Spradling JE (1981) Anal Chem 53:2154–2156

    CAS  Google Scholar 

  31. http://www.svanen.nu/DocEng/080e.pdf 08.02.2005

  32. Parkash R, Bansal R (1990) Anal Lett 23(7):1159–1166

    CAS  Google Scholar 

  33. Vanwelssenaers N, Clinckemaillie GG (1972) Anal Chim Acta 58:243–245

    CAS  PubMed  Google Scholar 

  34. Bergers PJM, de Groot AC (1994) Water Res 28(3):639–642

    Article  CAS  Google Scholar 

  35. Retho C, Diep L (1989) Z Lebensm Unters Forsch 188:223–226

    CAS  PubMed  Google Scholar 

  36. Analytical methods for the quantitative determination of Trilon (1995), Technical Information, BASF

  37. Horáček J, Přibil R (1969) Talanta 16:1495–1499

    Article  Google Scholar 

  38. Laamanen P-L, Mali A, Matilainen R (2005) Anal Bioanal Chem 381:1264–1271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Master of Science degree students Miia Keskinen, Tarja Olli, and Päivi Ojala for the UV–Vis measurements. The work of Pirita Laine was supported by University of Jyväskylä and Kemira Oyj Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirita Laine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laine, P., Matilainen, R. Simultaneous determination of DTPA, EDTA, and NTA by UV–visible spectrometry and HPLC. Anal Bioanal Chem 382, 1601–1609 (2005). https://doi.org/10.1007/s00216-005-3315-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3315-0

Keywords

Navigation