Skip to main content
Log in

Uranium analysis in urine by inductively coupled plasma dynamic reaction cell mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Urine uranium concentrations are the best biological indicator for identifying exposure to depleted uranium (DU). Internal exposure to DU causes an increased amount of urine uranium and a decreased ratio of 235U/238U in urine samples, resulting in measurements that vary between 0.00725 and 0.002 (i.e., natural and depleted uranium’s 235U/238U ratios, respectively). A method based on inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) was utilized to identify DU in urine by measuring the quantity of total U and the 235U/238U ratio. The quantitative analysis was achieved using 233U as an internal standard. The analysis was performed both with and without the reaction gas oxygen. The reaction gas converted ionized 235U+ and 238U+ into 235UO2+ (m/z=267) and 238UO2+ (m/z=270). This conversion was determined to be over 90% efficient. A polyatomic interference at m/z 234.8 was successfully removed from the 235U signal under either DRC operating conditions (with or without oxygen as a reaction gas). The method was validated with 15 urine samples of known uranium compositions. The method detection limit for quantification was determined to be 0.1 pg U mL−1 urine and an average coefficient of variation (CV) of 1–2% within the sample measurements. The method detection limit for determining 235U/238U ratio was 3.0 pg U mL−1 urine. An additional 21 patient samples were analyzed with no information about medical history. The measured 235U/238U ratio within the urine samples correctly identified the presence or absence of internal DU exposure in all 21 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Voegtlin C, Hodge HC (1949) Pharmacology and toxicology of uranium compounds, I and II. McGraw Hill, New York

    Google Scholar 

  2. Voegtlin C, Hodge HC (1953) Pharmacology and toxicology of uranium compounds, III and IV. McGraw Hill, New York

    Google Scholar 

  3. Fisher DR, Jackson PO, Brodaczynski GG, Scherpelz RI (1983) Health Phys 45:617–629

    Google Scholar 

  4. Thun BG, Baker DB, Steenland K, Smith AB, Halperin W, Berl T (1985) Environ Health 11:83–90

    Google Scholar 

  5. McDiarmid MA, Keogh JP, Hooper FJ, McPhaul K, Squibb K, Kane R, DiPino R, Kabat M, Kaup B, Anderson L, Hoover D, Brown L, Hamilton M, Jacobson-Kram D, Burrows B, Walsh M (2000) Environ Res 82(2):168–180

    Google Scholar 

  6. McDiarmid MA, Squibb K, Engelhardt S, Oliver M, Gucer P, Wilson PD, Kane R, Kabat M, Kaup B, Anderson L, Hoover D, Brown L, Jacobson-Kram D (2001) J Occup Environ Med 43:991–1000

    Google Scholar 

  7. Gwiazda RH, Squibb K, McDiarmid M, Smith D (2002) Health Phys 86:12–18

    Google Scholar 

  8. AEPI (1995) Health and environmental consequences of depleted uranium use in the US army: technical report. Altanta, GA US Army

    Google Scholar 

  9. Uijt de Haag PA, Smetsers RC, Witlox HW, Krus HW, Eisenga AH (2000) J Hazard Mater 76(1):39–58

    Google Scholar 

  10. Miller AC, Blakely WF, Livengood DL, Whitaker T, Xu J, Ejnik JW, Hamilton MM, Parlette E, St. John T, Gerstenburg HM, Hsu H (1998) Environ Health Perspect 106:465–471

    Google Scholar 

  11. Ejnik JW, Carmichael AJ, Hamilton MM, McDiarmid MA, Squibb KS, Boyd P, Tardiff W (1999) Health Phys 78:143–146

    Google Scholar 

  12. Hooper FS, Squibb KS, Siegel EL, McPhaul K, Keogh JP (1999) Health Phys 77:512–519

    Google Scholar 

  13. Horan P, Dietz L, Durakovic A (2002) Mil Med 167:620–627

    Google Scholar 

  14. Brina R, Miller AG (1992) Anal Chem 64:1413–1418

    Google Scholar 

  15. Caravajal GS, Mahan KI (1982) Anal Chim Acta 135:205–214

    Google Scholar 

  16. Karpas Z, Halicz L, Roiz J, Marko R, Katorza E, Lorber A, Goldbart Z (1996) Health Phys 71:879–885

    Google Scholar 

  17. Kressin IK (1984) Anal Chem 56:2269–2271

    Google Scholar 

  18. Lang S, Raunemaa T (1991) Radiat Res 126:273–279

    Google Scholar 

  19. Pleskach SD (1985) Health Phys 48:303–307

    Google Scholar 

  20. Rendl J, Seybold S, Borner W (1994) Clin Chem 40(6):908–913

    Google Scholar 

  21. Sachett IA, Nobrega AW, Lauria DC (1984) Health Phys 46:133–139

    Google Scholar 

  22. Allain P, Berre S, Premel-Cabic AY (1991) Anal Chim Acta 251:183–185

    Google Scholar 

  23. Desideri D, Meli MA, Roselli C, Testa C, Boulyga SF, Becker JS (2002) Anal Bioanal Chem 374:1091–1095

    Google Scholar 

  24. Boulyga SF, Matusevich JL, Mironov VP, Kudjashov VP, Halicz L, Segal I, McLean JA, Montaser A, Becker JS (2002) J Anal At Spectrom 17:958–964

    Google Scholar 

  25. Uchida S, Garcia-Tenorio R, Tagami K, Garcia-Leon M (2000) J Anal At Spectrom 15:889–892

    Google Scholar 

  26. Boulyga SF, Testa C, Desideri D, Becker JS (2001) J Anal At Spectrom 16:1283–1289

    Google Scholar 

  27. Boulyga SF, Becker JS (2002) J Anal At Spectrom 17:1143–1147

    Google Scholar 

  28. Zoriy MV, Halicz L, Ketterer ME, Pickhardt C, Ostapczuk P, Becker JS (2004) J Anal At Spectrom 19:362–367

    Google Scholar 

  29. Schaumloeffel D, Giusti P, Zoriy MV, Pickhardt C, Szupnar J, Lobinski R, Becker JS (2005) J Anal At Spectrom 20:17–21

    Google Scholar 

  30. Hodge SJ, Ejnik J, Squibb KS, McDiarmid MA, Morris ER, Landauer MR, McClain DE (2001) Mil Med 166:69–70

    Google Scholar 

  31. Westphal CS, McLean JA, Hakspiel SJ, Jackson WE, McClain DE, Montaser A (2004) Appl Spectrosc 58:1044–1050

    Google Scholar 

  32. Haitian M, Bordeaux M, East gate A, Froidevaux P, O’Donovan S, Von Gunten D, Zoller O (2001) J Anal At Spectrom 16:1364–1369

    Google Scholar 

  33. Caddia M, Iversen BS (1998) J Anal At Spectrom 13:309–313

    Google Scholar 

  34. Tresl I, DeWannemacker G, Quetel CE, Petrov I, Vanhaecke F, Moens L, Taylor PD (2004) Environ Sci Technol 38:581–586

    Google Scholar 

  35. Pappas RS, Ting BG, Jarret JM, Paschal DC, Caudill SP, Miller DT (2004) J Anal At Spectrom 17:131–134

    Google Scholar 

  36. Pappas RS, Ting BG, Paschal DC (2003) J Anal At Spectrom 18:1289–1292

    Google Scholar 

  37. Chen CC, Edwards RL, Cheng H, Dorale JA, Thomas RB, Moran SB, Weinstein SE, Edmonds HN (2002) Chem Geol 185:165–178

    Google Scholar 

  38. Deployment Health Support Directorate, Department of Defense: impact of laboratory performance of urine uranium analyses on exposure evaluations of gulf war veterans (2002) url:http://www.deploymenthealthlink.osd. mil/du_library/reports/medical_us.shtml

  39. Tanner SD, Baranov VI, Bandura DR (2002) Spectrochimica Acta Part B 57:1361–1452

    Google Scholar 

  40. Becker JS (2002) Spectrochim Acta Part B 57:1805–1820

    Google Scholar 

  41. Vanhaecke F, Moens L (1999) Fresenius J Anal Chem 364:440–451

    Google Scholar 

  42. Dang HS, Pullat VR, Pillai KC (1992) Health Phys 62:562–566

    Google Scholar 

  43. Medley DW, Kathren RL, Miller AG (1994) Health Phys 67:122–130

    Google Scholar 

  44. Ting BG, Paschal DC, Jarrett JM, Pirkle JL, Jackson RJ, Sampson EJ, Miller DT, Caudill SP (1999) Environ Res 81(1):45–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Centeno.

Additional information

The opinions and assertions expressed herein are those of the authors and are not to be construed as official or as representing the views of the Armed Forces Institute of Pathology, the Department of the Army, or the Department of Defense

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejnik, J.W., Todorov, T.I., Mullick, F.G. et al. Uranium analysis in urine by inductively coupled plasma dynamic reaction cell mass spectrometry. Anal Bioanal Chem 382, 73–79 (2005). https://doi.org/10.1007/s00216-005-3173-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3173-9

Keywords

Navigation