Skip to main content
Log in

Theoretical studies of \({{\mathrm{{CN} + {H}}_{2}({\mathrm{D}}_{2})}}\) reactions: competition between H(D)-abstractions in \({\mathrm{H(D) + HCN(DCN)/HNC(DNC)}} \) channels

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The \(\hbox {CN} + \hbox {H}_{2}\) reaction was investigated by considering the two possible channels, \(\hbox {H} + \hbox {HCN}\) and \(\hbox {H} + \hbox {HNC}\), taking into account the isotopic effects and with the vibrationally excited states. The frequencies and structures for all species of the \(\hbox {CN} + \hbox {H}_{2}/\hbox {D}_{2}\) reaction were calculated using G3 method for further kinetics calculation. The thermal rate constants were calculated using the conventional transition-state theory (TST) and canonical variational transition-state theory (CVT) by APUAMA code, over the temperature range from 200 to 4000 K. In addition, rate coefficients for vibrationally excited reactants CN (v = 1) or \(\hbox {H}_{2}\) (v = 1) or \(\hbox {D}_{2}\) (v = 1) are presented. The branching ratio for the partitioning into H/D + HCN/DCN or H/D + HNC/DNC has, also, been determined. The results showed that the \(\hbox {CN} (v=0) + \hbox {H}_{2} (v=0) \rightarrow \hbox {H} + \hbox {HCN} \) channel is dominant at all range of temperature, while \(\hbox {CN } (v=1) + \hbox {H}_{2} (v=0) \rightarrow \hbox {H} + \hbox {HNC}\) channel is dominant at T \(\ge \) 1900 K. The isotopic effects are the same behavior that \(\hbox {CN}(v=0,1) + \hbox {H}_{2}(v=0,1) \rightarrow \hbox {H} + \hbox {HCN/HNC}\) reactions. Reasonable agreement was found between the experimental results and the rate constants predicted by conventional transition-state theory, with tunneling correction, using the theoretical transition-state properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schacke H, Wagner HGg (1977) J Wolfrum Chem Phys 81:670

    CAS  Google Scholar 

  2. Sims IR, Smith IWM (1988) Chem Phys Lett 149:565

    Article  CAS  Google Scholar 

  3. Sun Q, Yang DL, Bowman JM, Lin MC (1990) J Chem Phys 93:4730

    Article  CAS  Google Scholar 

  4. He KG, Tokue I, Macdonald RG (1998) J Phys Chem A 102:4585. https://doi.org/10.1021/jp980875o

    Article  CAS  Google Scholar 

  5. He KG, Tokue I, Harding LB, Macdonald RG (1998) J Phys Chem A 102:7653. https://doi.org/10.1021/jp982391y

    Article  CAS  Google Scholar 

  6. Che DC, Liu K (1996) Chem Phys 207:367

    Article  CAS  Google Scholar 

  7. Lai LH, Wang JH, Che DC, Liu K (1996) J Chem Phys 105:3332

    Article  CAS  Google Scholar 

  8. Wang JH, Liu K, Schatz GC, ter Horst M (1997) J Chem Phys 107:7869

    Article  CAS  Google Scholar 

  9. Pfeiffer JM, Metz RB, Thoemke JD, Woods E III, Crim FF (1996) J Chem Phys 104:4490

    Article  CAS  Google Scholar 

  10. Kreher C, Theinl R, Gericke KH (1996) J Chem Phys 104:4481

    Article  CAS  Google Scholar 

  11. Bair RA, Dunning TH (1985) J Chem Phys 82:2280

    Article  CAS  Google Scholar 

  12. ter Horst MA, Schatz GC, Harding LB (1996) J Chem Phys 105:558

    Article  Google Scholar 

  13. Carter S, Bowman JM, Harding LB (1997) Spectrochim Acta A 53:1179

    Article  Google Scholar 

  14. Sun Q, Bowman JM (1990) J Chem Phys 92:5201

    Article  CAS  Google Scholar 

  15. Bowman JM (1991) J Phys Chem 95:4960

    Article  CAS  Google Scholar 

  16. Bowman JM, Schatz GC (1995) Annu Rev Phys Chem 46:169

    Article  CAS  Google Scholar 

  17. Clary DC (1995) J Phys Chem 99:13664

    Article  CAS  Google Scholar 

  18. Takayanagi T, Schatz GC (1997) J Chem Phys 106:3227

    Article  CAS  Google Scholar 

  19. Bethardy GA, Wagner AF, Schatz GC, ter Host MA (1997) J Chem Phys 106:6001

    Article  CAS  Google Scholar 

  20. Takayanagi T, Schatz GC (1997) Chem Phys Lett 265:410

    Article  CAS  Google Scholar 

  21. Manthe U, Matzkies F (1998) Chem Phys Lett 282:442

    Article  CAS  Google Scholar 

  22. Zhu W, Zhang JZH, Zhang YC, Zhang YB, Zhan LX, Zhang SL, Zhang DH (1998) J Chem Phys 108:3509

    Article  CAS  Google Scholar 

  23. Correa E, e Silva WB, Barreto PRP, Albernaz AF (2017) J Mol Model 23:169

    Article  Google Scholar 

  24. Zhao R, Gao D, Pan X, Song L, Yu H, Yu S, Yao L (2019) Chem Phys 516:38

    Article  CAS  Google Scholar 

  25. Kaledin AL, Haeven MC, Bowman JM (1999) J Chem Phys 100:10380

    Article  Google Scholar 

  26. Euclides HO, Barreto PRP (2017) J Mol Model 23:176

    Article  Google Scholar 

  27. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  28. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  30. Fernández-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Chem Rev 106:4518

    Article  Google Scholar 

  31. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., New York

    Book  Google Scholar 

  32. Irikura KK (2007) J Phys Chem Ref Data 36(2):389

    Article  CAS  Google Scholar 

  33. Wagner AF, Bair RA (1986) Int Chem Kinet 18:473

    Article  CAS  Google Scholar 

  34. Kim K, Kin WT (1979) J Chem Phys 71:1967

    Article  CAS  Google Scholar 

  35. da Silva WB, Albernaz AF, Barreto PRP, Correa E (2017) J Mol Model 23:143

    Article  Google Scholar 

  36. da Silva WB, Gargano R, e Silva GM, Albernaz AF (2016) Rev Virt Quim 8:515

    Article  Google Scholar 

  37. Balucani N, Leonori F, Petrucci R, Wang X, Casavecchia P, Skouteris D, Albernaz AF, Gargano R (2015) Chem Phys 449:34

    Article  CAS  Google Scholar 

  38. Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances, Fouth edn. Hemisphere Pub. Co., New York

    Google Scholar 

  39. Murrell JN, Farantos SC, Huxley P, Varandas AJC (1984) Molecular potential energy functions. Oxford University Press, New York

    Google Scholar 

  40. Dunham JL (1932) Phys Rev 41:713

    Article  CAS  Google Scholar 

  41. Hammond G (1955) J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

  42. Atakan B, Jacobs A, Wahl M, Weller R (1989) J Wolfrum Chem Phys Lett 154:449

    Article  CAS  Google Scholar 

  43. Balla RJ, Pasternack L (1987) J Phys Chem 91:73

    Article  CAS  Google Scholar 

  44. Wang X, Bowman M (2013) J Chem Theory Comput 9:901

    Article  CAS  Google Scholar 

  45. Jiang B, Guo H (2013) J Chem Phys 139:224310

    Article  Google Scholar 

  46. Sumathi R, Nguyen MT (1998) J Phys Chem A 102:8013

    Article  CAS  Google Scholar 

  47. Ju L-P, Han K-L, Zang JZH (2006) J Theory Comput Chem 4:769

    Article  Google Scholar 

  48. Johnston GW, Bersohn R (1989) J Chem Phys 90:7096

    Article  CAS  Google Scholar 

  49. Jacobs A, Wahl M, Weller R (1989) J Wolfrum Symp Int Combust Proc 22:1093

    Article  Google Scholar 

  50. Choi N, Blitz MA, McKee K, Pilling MJ, Seakins PW (2004) Chem Phys Lett 68:384

    Article  Google Scholar 

  51. Natarajan K, Roth P (1988) Symp Int Combust Proc 21:729

    Article  Google Scholar 

  52. Wooldridge ST, Hanson RK, Bowman CT (1996) Int J Chem Phys Kinet 28:245

    Article  CAS  Google Scholar 

  53. Baulch DL, Cobos CJ, Cox RA, Frank P, Hayman G, Just Th, Kerr JA, Murrells T, Pilling MJ, Troe J, Walker RW, Warnatz J (1994) J Phys Chem Ref Data 23:847

    Article  CAS  Google Scholar 

  54. Tsang W (1992) J Phys Chem Ref Data 21:753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra F. Albernaz.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albernaz, A.F., Barreto, P.R.P. Theoretical studies of \({{\mathrm{{CN} + {H}}_{2}({\mathrm{D}}_{2})}}\) reactions: competition between H(D)-abstractions in \({\mathrm{H(D) + HCN(DCN)/HNC(DNC)}} \) channels. Theor Chem Acc 138, 93 (2019). https://doi.org/10.1007/s00214-019-2479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2479-1

Keywords

Navigation