Skip to main content

Advertisement

Log in

Molecular insights into the carbon dioxide–carboxylate anion interactions and implications for carbon capture

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we analyze the interaction of carbon dioxide with different carboxylate anion derivatives in the gas phase at the ab initio CCSD(T)//MP2 level using the aug-cc-pVTZ basis set. The systems considered here include the formate, acetate, propionate, bicarbonate, carbamate and glycinate anions. The study is relevant to get a better understanding of the interactions involved in novel carbon capture processes through either ionic liquids or amino acid salts. We describe the formation of covalent and non-covalent adducts and show that the formation energies are significantly larger than those previously reported for amines, which are used in conventional carbon capture processes. The nature of the interactions is analyzed using the natural bond orbitals methodology. The binding energy in the non-covalent processes does not depend much on the derivative, but covalent adducts display a rough correlation with nucleophilic/electrophilic indices provided distortion effects on the monomers are taken into account. In the case of glycinate, interactions with the amino and carboxylic moieties involve comparable energetics and the existence of several minima in the potential energy surface might be a factor contributing to the good CO2 capture capacity exhibited by this species in recent experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paris Agreement, United Nations Treaty. https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27&clang=_en. Accessed 25 Feb 2019

  2. Vitillo JG, Smit B, Gagliardi L (2017) Chem Rev 117:9521–9523

    Article  CAS  Google Scholar 

  3. Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933

    Article  Google Scholar 

  4. Rochelle GT (2009) Science 325:1652–1654

    Article  CAS  Google Scholar 

  5. Ramdin M, de Loos TW, Vlugt TJ (2012) Ind Eng Chem Res 51:8149–8177

    Article  CAS  Google Scholar 

  6. Aghaie M, Rezaei N, Zendehboudi S (2018) Renew Sustain Energy Rev 96:502–525

    Article  CAS  Google Scholar 

  7. Jutz F, Andanson J-M, Baiker A (2010) Chem Rev 111:322–353

    Article  Google Scholar 

  8. Jockenhövel T, Schneider R, Rode H (2009) Energy Proc 1:1043–1050

    Article  Google Scholar 

  9. Guo D, Thee H, Tan CY, Chen J, Fei W, Kentish S, Stevens GW, da Silva G (2013) Energy Fuels 27:3898–3904

    Article  CAS  Google Scholar 

  10. Zhang Z, Li Y, Zhang W, Wang J, Soltanian MR, Olabi AG (2018) Renew Sustain Energy Rev 98:179–188

    Article  CAS  Google Scholar 

  11. Hu G, Smith KH, Wu Y, Mumford KA, Kentish SE, Stevens GW (2018) Chin J Chem Eng

  12. Shiflett MB, Yokozeki A (2008) J Chem Eng Data 54:108–114

    Article  Google Scholar 

  13. Carvalho PJ, Álvarez VH, Schröder B, Gil AM, Marrucho IM, Aznar M, Santos LM, Coutinho JA (2009) J Phys Chem B 113:6803–6812

    Article  CAS  Google Scholar 

  14. Barber PS, Griggs CS, Gurau G, Liu Z, Li S, Li Z, Lu X, Zhang S, Rogers RD (2013) Angew Chem Int Ed Engl 52:12350–12353

    Article  CAS  Google Scholar 

  15. Ma J, Zhou Z, Zhang F, Fang C, Wu Y, Zhang Z, Li A (2011) Environ Sci Technol 45:10627–10633

    Article  CAS  Google Scholar 

  16. Meredith JC, Johnston KP, Seminario JM, Kazarian SG, Eckert CA (1996) J Phys Chem 100:10837–10848

    Article  Google Scholar 

  17. Girard E, Tassaing T, Marty J-D, Destarac M (2016) Chem Rev 116:4125–4169

    Article  CAS  Google Scholar 

  18. Raveendran P, Wallen SL (2002) J Am Chem Soc 124:7274–7275

    Article  CAS  Google Scholar 

  19. Ingrosso F, Ruiz-Lopez MF (2018) J Phys Chem A 122:1764–1770

    Article  CAS  Google Scholar 

  20. Ingrosso F, Ruiz-Lopez MF (2017) ChemPhysChem 18:2560–2572

    Article  CAS  Google Scholar 

  21. San-Fabian E, Ingrosso F, Lambert A, Bernal-Uruchurtu MI, Ruiz-Lopez MF (2014) Chem Phys Lett 601:98–102

    Article  CAS  Google Scholar 

  22. Munoz-Losa A, Martins-Costa MTC, Ingrosso F, Ruiz-Lopez MF (2014) Mol Simul 40:154–159

    Article  CAS  Google Scholar 

  23. Azofra LM, Altarsha M, Ruiz-Lopez MF, Ingrosso F (2013) Theoret Chem Acc 132:1326

    Article  Google Scholar 

  24. Altarsha M, Ingrosso F, Ruiz-Lopez MF (2012) ChemPhysChem 13:3397–3403

    Article  CAS  Google Scholar 

  25. Trung NT, Nguyen MT (2013) Chem Phys Lett 581:10–15

    Article  CAS  Google Scholar 

  26. Kim N-S, Jeong S-K, Yoon S-H, Park G-S (2011) Bull Korean Chem Soc 32:4441–4443

    Article  CAS  Google Scholar 

  27. Shi W, Myers CR, Luebke DR, Steckel JA, Sorescu DC (2011) J Phys Chem B 116:283–295

    Article  Google Scholar 

  28. Shi W, Thompson RL, Albenze E, Steckel JA, Nulwala HB, Luebke DR (2014) J Phys Chem B 118:7383–7394

    Article  CAS  Google Scholar 

  29. Steckel JA (2012) J Phys Chem A 116:11643–11650

    Article  CAS  Google Scholar 

  30. Tian Q, Li R, Sun H, Xue Z, Mu T (2015) J Mol Liq 208:259–268

    Article  CAS  Google Scholar 

  31. Simon NM, Zanatta M, Neumann J, Girard AL, Marin G, Stassen H, Dupont J (2018) ChemPhysChem 19:2879–2884

    Article  CAS  Google Scholar 

  32. Hussain MA, Soujanya Y, Sastry GN (2011) Environ Sci Technol 45:8582–8588

    Article  CAS  Google Scholar 

  33. Kim N, Yoon S, Park G (2013) Tetrahedron 69:6693–6697

    Article  CAS  Google Scholar 

  34. Azofra LM (2015) Chem Phys 453:1–6

    Article  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  36. Bartlett RJ (1989) J Phys Chem 93:1697–1708

    Article  CAS  Google Scholar 

  37. Moller C, Plesset MS (1934) Phys Rev 46:0618–0622

    Article  CAS  Google Scholar 

  38. Dunning THJ (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  39. Lee TJ, Taylor PR (1989) Int J Quantum Chem 36:199–207

    Article  Google Scholar 

  40. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  41. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  42. Caldwell G, Renneboog R, Kebarle P (1989) Can J Chem 67:611–618

    Article  CAS  Google Scholar 

  43. O’Hair RAJ, Bowie JH, Gronert S (1992) Int J Mass Spectrom Ion Process 117:23–36

    Article  Google Scholar 

  44. Remko M, Smieško M, van Duijnen PT (2000) Mol Phys 98:709–714

    Article  CAS  Google Scholar 

  45. Chattaraj PK, Maiti B (2001) J Phys Chem A 105:169–183

    Article  CAS  Google Scholar 

  46. Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175

    Article  CAS  Google Scholar 

  47. Contreras R, Andres J, Safont V, Campodonico P, Santos J (2003) J Phys Chem A 107:5588–5593

    Article  CAS  Google Scholar 

  48. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  49. Leitzke A, Flyunt R, Theruvathu JA, von Sonntag C (2003) Org Biomol Chem 1:1012–1019

    Article  CAS  Google Scholar 

  50. Ingrosso F, Altarsha M, Dumarçay F, Kevern G, Barth D, Marsura A, Ruiz-López MF (2016) Chem Eur J 22:2972–2979

    Article  CAS  Google Scholar 

  51. Corradini D, Coudert FX, Vuilleumier R (2016) Nat Chem 8:454–460

    Article  CAS  Google Scholar 

  52. da Silva EF, Svendsen HF (2004) Ind Eng Chem Res 43:3413–3418

    Article  Google Scholar 

  53. Davran-Candan T (2014) J Phys Chem A 118:4582–4590

    Article  CAS  Google Scholar 

  54. Firaha DS, Kirchner B (2016) Chemsuschem 9:1591–1599

    Article  CAS  Google Scholar 

  55. Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA (2017) Chem Rev 117:9524–9593

    Article  CAS  Google Scholar 

  56. Orestes E, Ronconi CM, de Mesquita Carneiro JW (2014) Phys Chem Chem Phys 16:17213–17219

    Article  CAS  Google Scholar 

  57. Siggel MRF, Thomas TD (1992) J Am Chem Soc 114:5795–5800

    Article  CAS  Google Scholar 

  58. Kumar P, Hogendoorn J, Versteeg G, Feron P (2003) AIChE J 49:203–213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FI gratefully acknowledges the support from the EMERGENCE call of the Chemistry Institute of the CNRS (Project RéScMol). FI and MFRL are grateful to the French CINES (Project lct2550) for providing computational resources. WH is grateful for the IT department at USEK for technical aid to use HPC on Microsoft Azure platform and to AUF for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Ruiz-López.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harb, W., Ingrosso, F. & Ruiz-López, M.F. Molecular insights into the carbon dioxide–carboxylate anion interactions and implications for carbon capture. Theor Chem Acc 138, 85 (2019). https://doi.org/10.1007/s00214-019-2472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2472-8

Keywords

Navigation