Skip to main content
Log in

Direct inversion of the iterative subspace (DIIS) convergence accelerator for crystalline solids employing Gaussian basis sets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

When dealing with crystalline solids, convergence of iterative procedures such as self-consistent field (SCF) or coupled–perturbed equations is often more difficult than in the case of molecular systems, specially when a local basis set of atom-centered Gaussians is adopted. Reasons are usually to be found in the close packing of atoms and peculiar chemical characters, such as metallic bond. In this work, a periodic implementation of the direct inversion of the iterative subspace (DIIS) method for crystalline solids is presented for SCF and electric field response up to second order. The error vectors are computed in reciprocal space and implemented for the energy, polarizability and up to second hyperpolarizability. The performance of different DIIS flavors is benchmarked on a representative set of 42 systems including metallic, ionic, molecular and covalent crystals, bulk crystals, surfaces and nanotubes, adopting all-electron basis sets as well as pseudopotentials. Interestingly, it is seen that the error vectors evaluated in the central (gamma) point of the Brillouin zone are sufficient in all cases for an optimal DIIS performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pulay P (1980) Convergence acceleration of iterative sequences. The case of SCF iteration. Chem Phys Lett 73(2):393–398

    Article  CAS  Google Scholar 

  2. Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3(4):556–560

    Article  CAS  Google Scholar 

  3. Johnson DD (1988) Modified Broyden’s method for accelerating convergence in self-consistent calculations. Phys Rev B 38:12807–12813

    Article  CAS  Google Scholar 

  4. Anderson DG (1965) Iterative procedures for nonlinear integral equations. J Assoc Comput Mach 12:547

    Article  Google Scholar 

  5. Graves-Morris PR, Roberts DE, Salamc A (2000) The epsilon algorithm and related topics. J Comput Appl Math 122:51–80

    Article  Google Scholar 

  6. Kudin KN, Scuseria GE, Cancès E (2002) A black-box self-consistent field convergence algorithm: one step closer. J Chem Phys 116(19):8255–8261

    Article  CAS  Google Scholar 

  7. Garza AJ, Scuseria GE (2012) Comparison of self-consistent field convergence acceleration techniques. J Chem Phys 137(5):054110

    Article  Google Scholar 

  8. Hu X, Yang W (2010) Accelerating self-consistent field convergence with the augmented Roothaan Hall energy function. J Chem Phys 132(5):054109

    Article  Google Scholar 

  9. Chen YK, Wang YA (2011) Listb: a better direct approach to list. J Chem Theory Comput 7(10):3045–3048

    Article  CAS  Google Scholar 

  10. Li H, Yaron DJ (2016) A least-squares commutator in the iterative subspace method for accelerating self-consistent field convergence. J Chem Theory Comput 12(11):5322–5332

    Article  CAS  Google Scholar 

  11. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Derivative studies in Hartree–Fock and Møller–Plesset theories. Int J Quant Chem 16(S13):225–241

    Article  Google Scholar 

  12. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  13. Dovesi R, Erba A, Orlando R, Zicovich-Wilson CM, Civalleri B, Maschio L, Ferrabone M, Rérat M, Casassa S, Baima J, Salustro S, Kirtman B (2018) Quantum-mechanical condensed matter simulations with crystal. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1360

    Google Scholar 

  14. Zicovich-Wilson CM, Dovesi R (1998) On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. I. The construction of the symmetrized orbitals. Int J Quantum Chem 67:299–309

    Article  CAS  Google Scholar 

  15. Intel(R) Math Kernel Libraries 2017 update 3 for Linux

  16. Ferrero M, Rérat M, Kirtman B, Dovesi R (2008) Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J Chem Phys 129:244110

    Article  Google Scholar 

  17. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, Chichester

    Book  Google Scholar 

  18. Hamilton TP, Pulay P (1986) Direct inversion in the iterative subspace (DIIS) optimization of open-shell, excited-state, and small multiconfiguration SCF wave functions. J Chem Phys 84(10):5728–5734

    Article  CAS  Google Scholar 

  19. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101

    Article  Google Scholar 

  20. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651

    Article  CAS  Google Scholar 

  21. Bishop DM, Gu FL, Kirtman B (2001) Coupled–perturbed Hartree–Fock theory for infinite periodic systems: calculation of static electric properties of (LiH)n,(LiH)n, (FH)n,(FH) n , (H2O) n ,(H2O) n , (–CNH–) n ,(–CNH–) n , and (–CH=CH–) n . J Chem Phys 114:7633

    Article  CAS  Google Scholar 

  22. Sadlej AJ (1978) Comments on the geometric approximation to the second-order perturbed energies. Chem Phys Lett 58(4):561–564

    Article  CAS  Google Scholar 

  23. Császár P, Pulay P (1984) Geometry optimization by direct inversion in the iterative subspace. J Mol Struct 114:31–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Maschio.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maschio, L. Direct inversion of the iterative subspace (DIIS) convergence accelerator for crystalline solids employing Gaussian basis sets. Theor Chem Acc 137, 60 (2018). https://doi.org/10.1007/s00214-018-2238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2238-8

Keywords

Navigation