Skip to main content
Log in

Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The present study pretends to assign the correct multiplicity state to dinuclear copper complexes when interacting with free molecular oxygen. Recently, the formation of a bridge butterfly μη 2 2-peroxo dicopper core structure stabilized by the direct interaction of the counterion, a carboxylate group that allows the double bridge linking both metal-centre atoms, was characterized by crystallography. This system was assigned as a diradical singlet with Ms = 0. However, after new calculations it has turned out to be triplet (Ms = 1) despite the stabilization for this latter multiplicity state is not high. Here, the factors that contribute to make this structure display a multiplicity different with respect to the previously expected diradical singlet are described. In the present theoretical study, the roles of the αSp ligand constraints and the counterion are unravelled. On the other hand, the relative stability between the butterfly μη 2 2-peroxo structure and the isomeric bis(μ-oxo) species is also on discussion. Despite the relative stabilities of all these either structural or electronic isomeric species are supposed to depend on the computational method, which is a difficulty to reach a definite conclusion about the nature of the active species, all DFT methods using either pure or not pure DFT functionals here reach the same conclusion, favoring the triplet as the ground state for the butterfly μη 2 2-peroxo dicopper core structure, and the bis(μ-oxo) species when removing the benzoate counterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Standard deviations for the distances and for the angles, \( S_{n - 1} = \sqrt {\frac{{\sum\nolimits_{i = 1}^{N} {({\text{CV}} - {\text{EV}})^{2} } }}{N - 1}} \), where CV means calculated value, EV experimental value (X-ray data), and N is the number of distances or angles taken into account (See supporting information for details).

References

  1. Karlin KD, Gultneh Y (1987) Prog Inorg Chem 35:219–327

    Article  CAS  Google Scholar 

  2. Sorrell TN (1989) Tetrahedron 45:3–68

    Article  CAS  Google Scholar 

  3. Karlin KD, Tyeklar Z (1994) Adv Inorg Biochem 9:123–172

    CAS  Google Scholar 

  4. Solomon EI, Lowery MD (1993) Science 259:1575–1581

    Article  CAS  Google Scholar 

  5. Que L Jr, Tolman WB (2002) Angew Chem Int Ed 41:1114–1137

    Article  CAS  Google Scholar 

  6. Holland PL, Tolman WB (1999) Coord Chem Rev 192:855–869

    Article  Google Scholar 

  7. Kitajima N, Moro-oka Y (1994) Chem Rev 94:737–757

    Article  CAS  Google Scholar 

  8. Itoh S, Taki M, Nakao H, Holland PL, Tolman WB, Que L Jr, Fukuzumi S (2000) Angew Chem Int Ed 39:398–400

    Article  CAS  Google Scholar 

  9. Balasubramanian R, Rosenzweig AC (2007) Acc Chem Res 40:573–580

    Article  CAS  Google Scholar 

  10. Rolff M, Tuczek F (2008) Angew Chem Int Ed 47:2344–2347

    Article  CAS  Google Scholar 

  11. Palavicini S, Granata A, Monzani E, Casella L (2005) J Am Chem Soc 127:18031–18036

    Article  CAS  Google Scholar 

  12. Battaini G, Monzani E, Perotti A, Para C, Casella L, Santagostini L, Gullotti M, Dillinger R, Näther C, Tuczek F (2003) J Am Chem Soc 125:4185–4198

    Article  CAS  Google Scholar 

  13. Santagostini L, Gullotti M, Monzani E, Casella L, Dillinger R, Tuczek F (2000) Chem Eur J 6:519–522

    Article  CAS  Google Scholar 

  14. Karlin KD, Nasir MS, Cohen BI, Cruse RW, Kaderli S, Zuberbühler AD (1994) J Am Chem Soc 116:1324–1336

    Article  CAS  Google Scholar 

  15. Mahapatra S, Kaderli S, Llobet A, Neuhold Y-M, Palanche T, Halfen JA, Young VG Jr, Kaden TA, Que L Jr, Zuberbuhler AD, Tolman WB (1997) Inorg Chem 36:6343–6356

    Article  CAS  Google Scholar 

  16. Yamazaki S, Itoh S (2003) J Am Chem Soc 125:13034–13035

    Article  CAS  Google Scholar 

  17. Granata A, Monzani E, Bubacco L, Casella L (2006) Chem Eur J 12:2504–2514

    Article  CAS  Google Scholar 

  18. De A, Mandal S, Mukherjee R (2008) J Inorg Biochem 102:1170–1189

    Article  CAS  Google Scholar 

  19. Stack TDP (2003) Dalton Trans 10:1881–1889

    Article  CAS  Google Scholar 

  20. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    Article  CAS  Google Scholar 

  21. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    Article  CAS  Google Scholar 

  22. Solomon EI, Chen P, Metz M, Lee S-K, Palmer AE (2001) Angew Chem Int Ed 40:4570–4590

    Article  CAS  Google Scholar 

  23. Karlin KD, Kaderli S, Zuberbühler AD (1997) Acc Chem Res 30:139–147

    Article  CAS  Google Scholar 

  24. Decker H, Dillinger R, Tuczek F (2000) Angew Chem Int Ed 39:1591–1595

    Article  CAS  Google Scholar 

  25. Lind T, Siegbahn PEM, Crabtree RH (1999) J Phys Chem B 103:1193–1202

    Article  CAS  Google Scholar 

  26. Decker H, Schweikardt T, Tuczek F (2006) Angew Chem Int Ed 45:4546–4550

    Article  CAS  Google Scholar 

  27. Siegbahn PEM (2003) J Biol Inorg Chem 8:567–576

    CAS  Google Scholar 

  28. Lewis EA, Tolman WB (2004) Chem Rev 114:1047–1076

    Article  CAS  Google Scholar 

  29. Kitajima N, Fujisawa K, Morooka Y (1989) J Am Chem Soc 111:8976–8978

    Article  Google Scholar 

  30. Kitajima N, Fujisawa K, Fujimoto C, Morooka Y, Hashimoto S, Kitagawa T, Torinmi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  31. Mahapatra S, Halfen JA, Wilinson EC, Pan G, Cramer CJ, Que L Jr, Tolman WB (1995) J Am Chem Soc 117:8865–8866

    Article  CAS  Google Scholar 

  32. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    Article  CAS  Google Scholar 

  33. Lewin JL, Heppner DE, Cramer CJ (2007) J Biol Inorg Chem 12:1221–1234

    Article  CAS  Google Scholar 

  34. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004

    Article  CAS  Google Scholar 

  35. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2007) Erratum ibid. J Phys Chem A 111:4871

    Google Scholar 

  36. Rode MF, Werner H-J (2005) Theor Chem Acc 114:309–317

    Article  CAS  Google Scholar 

  37. Costas M, Ribas X, Poater A, López-Valbuena JM, Xifra R, Company A, Duran M, Solà M, Llobet A, Corbella M, Usón MA, Mahía J, Solans X, Shan X, Benet-Buchholz J (2006) Inorg Chem 45:3569–3581

    Article  CAS  Google Scholar 

  38. Menif R, Martell AE, Squattrito PJ, Clearfield A (1990) Inorg Chem 29:4723–4729

    Article  CAS  Google Scholar 

  39. Malmqvist PA, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) J Chem Phys 128:204109–204110

    Article  CAS  Google Scholar 

  40. Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young VG Jr, Que L Jr, Zuberbühler AD, Tolman WB (1996) Science 271:1397–1400

    Article  CAS  Google Scholar 

  41. Mahapatra S, Halfen JA, Tolman WB (1996) J Am Chem Soc 118:11575–11586

    Article  CAS  Google Scholar 

  42. Osako T, Tachi Y, Taki M, Fukuzumi S, Itoh S (2001) Inorg Chem 40:6604–6609

    Article  CAS  Google Scholar 

  43. Hatcher LQ, Vance MA, Narducci Sarjeant AA, Solomon EI, Karlin KD (2006) Inorg Chem 45:3004–3013

    Article  CAS  Google Scholar 

  44. Mahadevan V, Hodgson KO, Stack TDP (1999) J Am Chem Soc 121:5583–5584

    Article  CAS  Google Scholar 

  45. Kodera M, Kajita Y, Tachi Y, Katayama K, Kano K, Hirota S, Fujinami S, Suzuki M (2004) Angew Chem Int Ed 43:334–337

    Article  CAS  Google Scholar 

  46. Ottenwaelder X, Rudd DJ, Corbett MC, Hodgson KO, Hedman B, Stack TDP (2006) J Am Chem Soc 128:9268–9269

    Article  CAS  Google Scholar 

  47. Funahashi Y, Nishikawa T, Wasada-Tsutsui Y, Kajita Y, Yamaguchi S, Arii H, Ozawa T, Jitsukawa K, Tosha T, Hirota S, Kitagawa T, Masuda H (2008) J Am Chem Soc 130:16444–16445

    Article  CAS  Google Scholar 

  48. Zhang CX, Liang H-C, Kim E-I, Shearer J, Helton ME, Kim E, Kaderli S, Incarvito CD, Zuberbühler AD, Rheingold AL, Karlin KD (2003) J Am Chem Soc 125:634–635

    Article  CAS  Google Scholar 

  49. Tolman WB (1997) Acc Chem Res 30:227–237

    Article  CAS  Google Scholar 

  50. Mahadevan V, Henson MJ, Solomon EI, Stack TDP (2000) J Am Chem Soc 122:10249–10250

    Article  CAS  Google Scholar 

  51. Taki M, Itoh S, Fukuzumi S (2001) J Am Chem Soc 123:6203–6204

    Article  CAS  Google Scholar 

  52. Taki M, Teramae S, Nagatomo S, Tachi Y, Kitagawa T, Itoh S, Fukuzumi S (2002) J Am Chem Soc 124:6367–6377

    Article  CAS  Google Scholar 

  53. Utz D, Kisslinger S, Heinemann FW, Hampel F, Schindler S (2011) Eur J Inorg Chem 255–267

  54. Garcia-Bosch I, Company A, Frisch JR, Torrent-Sucarrat M, Cardellach M, Gamba I, Güell M, Casella L, Que L Jr, Ribas X, Luis JM, Costas M (2010) Angew Chem Int Ed 49:2406–2409

    Article  CAS  Google Scholar 

  55. Zapata-Rivera J, Caballol R, Calzado CJ (2011) Phys Chem Chem Phys 13:20241–20247

    Article  CAS  Google Scholar 

  56. Yoshizawa K, Shiota Y (2006) J Am Chem Soc 128:9873–9881

    Article  CAS  Google Scholar 

  57. Yoshizawa K, Suzuki A, Shiota Y, Yamabe T (2000) Bull Chem Soc Jpn 73:815–827

    Article  CAS  Google Scholar 

  58. Poater A, Cavallo L (2009) Inorg Chem 48:4062–4066

    Article  CAS  Google Scholar 

  59. de la Lande A, Parisel O, Gérard H, Moliner V, Reinaud O (2008) Chem Eur J 14:6465–6473

    Article  CAS  Google Scholar 

  60. Yoshizawa K, Kihara N, Kamachi T, Shiota Y (2006) Inorg Chem 45:3034–3041

    Article  CAS  Google Scholar 

  61. Spuhler P, Holthausen MC (2003) Angew Chem Int Ed 42:5961–5965

    Article  CAS  Google Scholar 

  62. Poater A, Ribas X, Llobet A, Cavallo L, Solà M (2008) J Am Chem Soc 130:17710–17717

    Article  CAS  Google Scholar 

  63. Sander O, Henß A, Näther C, Würtele C, Holthausen MC, Schindler S, Tuczek F (2008) Chem Eur J 14:9714–9729

    Article  CAS  Google Scholar 

  64. Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Flörke U, Henkel G, Stack TDP (2009) J Am Chem Soc 131:1154–1169

    Article  CAS  Google Scholar 

  65. Lam BMT, Halfen JA, Young VG Jr, Hagadorn JR, Holland PL, Lledós A, Cucurull-Sánchez L, Novoa JJ, Álvarez S, Tolman WB (2000) Inorg Chem 39:4059–4072

    Article  CAS  Google Scholar 

  66. Naka N, Kondo Y, Usui S, Hashimoto Y, Uchiyama M (2007) Adv Synth Catal 349:595–600

    Article  CAS  Google Scholar 

  67. Itoh K, Hayashi H, Furutachi H, Matsumoto T, Nagatomo S, Tosha T, Tereda S, Fujinami S, Suzuki M, Kitagawa T (2005) J Am Chem Soc 127:5212–5223

    Article  CAS  Google Scholar 

  68. Inoue T, Shiota Y, Yoshizawa K (2008) J Am Chem Soc 130:16890–16897

    Article  CAS  Google Scholar 

  69. Poater A (2009) J Phys Chem A 113:9030–9040

    Article  CAS  Google Scholar 

  70. Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Flrke U, Henkel G, Stack TDP (2009) J Am Chem Soc 131:1154–1169

    Article  CAS  Google Scholar 

  71. Mirica LM, Vance M, Jackson-Rudd D, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Science 308:1890–1892

    Article  CAS  Google Scholar 

  72. Company A, Palavicini S, Garcia-Bosch I, Mas-Ballesté R, Que L Jr, Rybak-Akimova EV, Casella L, Ribas X, Costas M (2008) Chem Eur J 14:3535–3538

    Article  CAS  Google Scholar 

  73. Gherman BF, Cramer CJ (2008) Coord Chem Rev 253:723–753

    Article  CAS  Google Scholar 

  74. Hong S, Huber SM, Gagliardi L, Cramer CJ, Tolman WB (2007) J Am Chem Soc 129:14190–14192

    Article  CAS  Google Scholar 

  75. Cramer CJ, Kinal A, Wloch M, Piecuch P, Gagliardi L (2006) J Phys Chem A 110:11557–11568

    Article  CAS  Google Scholar 

  76. Bernardi F, Bottoni A, Casadio R, Fariselli P, Rigo A (1996) Inorg Chem 35:5207–5212

    Article  CAS  Google Scholar 

  77. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford CT

    Google Scholar 

  78. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  79. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  80. Stevens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  Google Scholar 

  81. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  82. Hehre WJ, Radom L, PVR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  83. Wachters AJH (1970) J Chem Phys 52:1033–1036

    Article  CAS  Google Scholar 

  84. Güell M, Luis JM, Rodríguez-Santiago L, Sodupe M, Solà M (2008) J Phys Chem A 113:1308–1317

    Article  CAS  Google Scholar 

  85. Caballol R, Castell O, Illas F, Moreira IDPR, Malrieu JP (1997) J Phys Chem A 101:7860–7866

    Article  CAS  Google Scholar 

  86. Winkler M (2005) J Phys Chem A 109:1240–1246

    Article  CAS  Google Scholar 

  87. Lindh R, Bernhardsson A, Schütz M (1999) J Phys Chem A 103:9913–9920

    Article  CAS  Google Scholar 

  88. Cramer CJ (1999) J Chem Soc Perkin Trans 2:2273–2283

    Google Scholar 

  89. Kikuchi A, Ito H, Abe J (2005) J Phys Chem B 109:19448–19453

    Article  CAS  Google Scholar 

  90. Borden WT (1998) Diradicals. In: PvR Schleyer, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaeffer HF III (eds) The encyclopedia of computational chemistry. Wiley, Chichester, pp 708–722

    Google Scholar 

  91. Poater J, Bickelhaupt FM, Solà M (2007) J Phys Chem A 111:5063–5070

    Article  CAS  Google Scholar 

  92. Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360–394

    Article  Google Scholar 

  93. Borden WT, Davidson ER (1996) Acc Chem Res 29:67–75

    Article  CAS  Google Scholar 

  94. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261–271

    Article  CAS  Google Scholar 

  95. Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537–542

    Article  CAS  Google Scholar 

  96. Lim MH, Worthington SE, Dulles FJ, Cramer CJ (1996) In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density functional theory, vol 629. Washington, DC, American Chemical Society, p 402

    Chapter  Google Scholar 

  97. Isobe H, Takano Y, Kitagawa W, Kawakami T, Yamanaka S, Yamaguchi K, Houk KN (2002) Mol Phys 100:717–727

    Article  CAS  Google Scholar 

  98. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  99. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  100. Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  101. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  102. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, New York

    Google Scholar 

  103. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  104. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  105. Koopmans T (1934) Physica 1:104–113

    Article  Google Scholar 

  106. Sala X, Poater A, von Zelewsky A, Parella T, Fontrodona X, Romero I, Solà M, Rodríguez M, Llobet A (2008) Inorg Chem 47:8016–8024

    Article  CAS  Google Scholar 

  107. Mola J, Rodríguez M, Romero I, Llobet A, Parella T, Poater A, Solà M, Benet-Buchholz J (2006) Inorg Chem 45:10520–10529

    Article  CAS  Google Scholar 

  108. Sala X, Plantalech E, Romero I, Rodríguez M, Llobet A, Poater A, Duran M, Solà M, Jansat S, Gómez M, Parella T, Stoeckli-Evans H, Benet-Buchholz J (2006) Chem Eur J 12:2798–2807

    Article  CAS  Google Scholar 

  109. Manzini S, Urbina-Blanco CA, Poater A, Slawin AMZ, Cavallo L, Nolan SP (2011) Angew Chem Int Ed 51:1042–1045

    Article  CAS  Google Scholar 

  110. Poater A, Moradell S, Pinilla E, Poater J, Solà M, Martínez MA, Llobet A (2006) Dalton Trans 1188–1196

  111. Duran J, Polo A, Real J, Benet-Buchholz J, Poater A, Solà M (2003) Eur J Inorg Chem 4147–4151

  112. Rich J, Rodríguez M, Romero I, Fontrodona X, van Leeuwen PWNM, Freixa Z, Sala X, Poater A, Solà M (2013) Eur J Inorg Chem. doi:10.1002/ejic.201201154

    Google Scholar 

  113. Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585

    CAS  Google Scholar 

  114. Güell M, Siegbahn PEM (2007) J Biol Inorg Chem 12:1251–1264

    Article  CAS  Google Scholar 

  115. Poater A, Cavallo L (2009) Inorg Chem 48:2340–2342

    Article  CAS  Google Scholar 

  116. Güell M, Luis JM, Solà M, Siegbahn PEM (2009) J Biol Inorg Chem 14:229–242

    Article  CAS  Google Scholar 

  117. Ribas X, Calle C, Poater A, Casitas A, Gómez L, Xifra R, Parella T, Benet-Buchholz J, Schweiger A, Mitrikas G, Solà M, Llobet A, Stack TDP (2010) J Am Chem Soc 132:12299–12306

    Article  CAS  Google Scholar 

  118. Casitas A, Poater A, Solà M, Stahl SS, Costas M, Ribas X (2010) Dalton Trans 39:10458–10463

    Article  CAS  Google Scholar 

  119. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  120. Braïda B, Hiberty PC, Savin A (1998) J Phys Chem A 102:7872–7877

    Article  Google Scholar 

  121. Sodupe M, Bertran J, Rodríguez-Santiago L, Baerends EJ (1999) J Phys Chem A 103:166–170

    Article  CAS  Google Scholar 

  122. Chermette H, Ciofini I, Mariotti F, Daul C (2001) J Chem Phys 115:11068–11079

    Article  CAS  Google Scholar 

  123. Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) J Phys Chem A 105:9211–9218

    Article  CAS  Google Scholar 

  124. Poater J, Solà M, Rimola A, Rodríguez-Santiago L, Sodupe M (2004) J Chem Phys A 108:6072–6078

    Article  CAS  Google Scholar 

  125. Metz M, Solomon EI (2001) J Am Chem Soc 123:4938–4950

    Article  CAS  Google Scholar 

  126. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55

    Article  CAS  Google Scholar 

  127. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737

    Article  CAS  Google Scholar 

  128. Blackburn NJ, Strange RW, Farooq A, Haka MS, Karlin KD (1988) J Am Chem Soc 110:4263–4272

    Article  CAS  Google Scholar 

  129. Pidcock E, Obias HV, Abe M, Liang HC, Karlin KD, Solomon EI (1999) J Am Chem Soc 121:1299–1308

    Article  CAS  Google Scholar 

  130. Company A, Gómez L, Mas-Ballesté R, Korendovych IV, Ribas X, Poater A, Parella T, Fontrodona X, Benet-Buchholz J, Solà M, Que L Jr, Rybak-Akimova EV, Costas M (2007) Inorg Chem 46:4997–5012

    Article  CAS  Google Scholar 

  131. Company A, Gómez L, Mas-Ballesté R, Korendovych IV, Ribas X, Poater A, Parella T, Fontrodona X, Benet-Buchholz J, Solà M, Que L Jr, Rybak-Akimova EV, Costas M (2006) Inorg Chem 45:5239–5241

    Article  CAS  Google Scholar 

  132. Kitajima N, Fujisawa K, Moro-oka Y (1989) J Am Chem Soc 111:8975–8976

    Article  CAS  Google Scholar 

  133. Kodera M, Katayama K, Tachi Y, Kano K, Hirota S, Fujinami S, Suzuki M (1999) J Am Chem Soc 121:11006–11007

    Article  CAS  Google Scholar 

  134. Funahashi Y, Nakaya K, Hirota S, Yamauchi O (2000) Chem Lett 1172–1173

  135. Okumura T, Hayami S, Ozawa T, Funahashi Y, Maeda Y, Masuda H (2007) Chem Lett 96–97

  136. Boschmann E, Weinstock LM, Carmack M (1974) Inorg Chem 13:1297–1300

    Article  CAS  Google Scholar 

  137. Choi S-N, Bereman RD, Wasson JR (1975) J Inorg Nucl Chem 37:2087–2090

    Article  CAS  Google Scholar 

  138. Kuroda R, Mason SF (1979) J Chem Soc, Dalton Trans 1979:727–730

    Article  Google Scholar 

  139. Lever ABP (1984) Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Amsterdam-Oxford-New York-Tokyo

    Google Scholar 

  140. Xifra R, Ribas X, Llobet A, Poater A, Duran M, Solà M, Stack TDP, Benet-Buchholz J, Donnadieu B, Mahía J, Parella T (2005) Chem Eur J 11:5146–5156

    Article  CAS  Google Scholar 

  141. Hatcher LQ, Karlin KD (2004) J Biol Inorg Chem 9:669–683

    Article  CAS  Google Scholar 

  142. Poater A, Saliner AG, Cavallo L, Poch M, Solà M, Worth AP (2012) Curr Med Chem 19:5219–5225

    Article  CAS  Google Scholar 

  143. Poater A, Saliner AG, Solà M, Cavallo L, Worth AP (2010) Expert Opin Drug Deliv 7:295–305

    Article  CAS  Google Scholar 

  144. Poater A, Saliner AG, Carbó-Dorca R, Poater J, Solà M, Cavallo L, Worth AP (2009) J Comput Chem 30:275–284

    Article  CAS  Google Scholar 

  145. Bérces A (1997) Inorg Chem 35:4831–4837

    Article  Google Scholar 

  146. Flock M, Pierloot K (1999) J Phys Chem A 103:95–102

    Article  CAS  Google Scholar 

  147. Rode MF, Werner H-J (2005) Theor Chem Acc 114:309–317

    Article  CAS  Google Scholar 

  148. Aullón G, Gorun SM, Álvarez S (2006) Inorg Chem 45:3594–3601

    Article  CAS  Google Scholar 

  149. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AP is grateful to the European Commission (CIG09-GA-2011-293900), Spanish MICINN (Ramón y Cajal contract RYC-2009-05226), and Generalitat de Catalunya (2011BE100793). LC thanks ENEA (www.enea.it) and the HPC team for support as for using the ENEA-GRID and the HPC facilities CRESCO (www.cresco.enea.it) Portici (Naples, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Poater.

Additional information

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poater, A., Cavallo, L. Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2 . Theor Chem Acc 132, 1336 (2013). https://doi.org/10.1007/s00214-013-1336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1336-x

Keywords

Navigation