Skip to main content

Advertisement

Log in

The effects of Topiramate on isolation-induced aggression: a behavioral and immunohistochemical study in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Topiramate, an antiepileptic drug, has been found to be useful for the treatment of aggression in clinical populations. Most preclinical studies related to Topiramate have been focused exclusively on the quantitative aspects of the aggressive behavior between mice. However, there is still limited knowledge regarding the effects of Topiramate on neuronal mechanisms occurring in aggressive mice. The present work aims to understand further the effects of the antiepileptic drug Topiramate on aggressive behaviors, and on the neural correlates underlying such behaviors. To achieve this, we combined the resident-intruder model of isolation-induced aggression in mice with two drug regimens of Topiramate administration (30.0 mg/kg; acute and sub-chronic treatments). Our data showed that both acute and subchronic treatments decreased the intensity of agonistic encounters and reinforced social behavior. By using C-fos immunoreactivity, we investigated the neuronal activation of several brain regions involved in aggressive behavior following subchronic treatment. We found that Topiramate produced activation in several cortical areas and in the lateral septum of resident brain mice compared with their controls. However, Topiramate induced inhibition in the medial nucleus of the amygdala, the dorsomedial nucleus of the periaqueductal gray, and especially in the anterior hypothalamic nucleus. Finally, we performed microinfusion of Topiramate (0.1 and 0.3 mM) into the lateral septum and anterior hypothalamus on offensive behaviors in isolation-induced-aggression paradigm. Interestingly, the microinfusion of Topiramate into the lateral septum has the capacity to alleviate aggressive behavior, without affecting social behavior. However, the microinfusion of Topiramate into the anterior hypothalamus decreased aggressive behavior and slightly reinforced social behavior. Our observations supported that the dose of 0.1 mM of Topiramate appeared more efficacy to treat aggression in adult mice. These pharmacological characteristics may account for Topiramate efficacy on aggressive symptoms in psychiatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aalbersberg CF, Mulder JM (2006) Topiramate for the treatment of post traumatic stress disorder. A case study. Tijdsch. Psychiatr 48:487–491

    CAS  Google Scholar 

  • Albert DJ, Chew GL (1980) The septal forebrain and the inhibitory modulation of attack and defense in the rat. A review. Behav Neural Biol 30:357–388

    CAS  PubMed  Google Scholar 

  • Albrecht A, Müller I, Ardi Z, Çalışkan G, Gruber D, Ivens S, Segal M, Behr J, Heinemann U, Stork O, Richter-Levin G (2017) Neurobiological consequences of juvenile stress: a GABAergic perspective on risk and resilience. Neurosci Biobehav Rev 74:21–43. https://doi.org/10.1016/j.neubiorev.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  • Ann S, Greenfield S (2013) Topiramate in the treatment of substance related disorders: a critical review of the literature. J Clin Psychiatry 71(5):634–648. https://doi.org/10.4088/JCP.08r04062gry

    Article  CAS  Google Scholar 

  • Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ (2014) Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156(3):522–536. https://doi.org/10.1016/j.cell.2013.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appolinario JC, Fontenelle LF, Papelbaum M, Bueno JR, Coutinho W (2002) Topiramate use in obese patients with binge eating disorder: an open study. Can J Psychiatry 47:271–273. https://doi.org/10.1177/070674370204700309

    Article  PubMed  Google Scholar 

  • Belozertseva IV, Andreev BV (1999) Regulation of the mouse aggressive behavior (pharmacological analysis of the GABAergic mechanism). ZH Vyssh Nerv Deiat Im IP Pavlova 49:780–788

    CAS  Google Scholar 

  • Berkowitz L (1993) Aggression: its causes, consequences, and control. Temple Univ. Press, New York

    Google Scholar 

  • Bouchatta O, Ouhaz Z, Ba-Mhamed S, Kerekes N, Bennis M (2016) Acute and chronic glue sniffing effects and consequences of withdrawal on aggressive behavior. Life Sci 152:14–20. https://doi.org/10.1016/j.lfs.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  • Brain PF, Benton D, Childs G, Parmigiani S (1981) The effect of the type of opponent in tests of murine aggression. Behav Processes 6:319–327. https://doi.org/10.1016/0376-6357(81)90049-8

    Article  CAS  PubMed  Google Scholar 

  • Chong MS, Libretto SE (2003) The rationale and use of topiramate for treating neuropathic pain. Clin J Pain 19:59–68

    CAS  PubMed  Google Scholar 

  • Comai S, Tau M, Gobbi G (2012) The psychopharmacology of aggressive behavior: a translational approach: part 1: neurobiology. J Clin Psychopharmacol 32:83–94. https://doi.org/10.1097/JCP.0b013e31823f8770

    Article  PubMed  Google Scholar 

  • Davis ES, Marler CA (2004) C-fos changes following an aggressive encounter in female California mice: a synthesis of behavior, hormone changes and neural activity. Neurosci 127:611–624. https://doi.org/10.1016/j.neuroscience.2004.05.034

    Article  CAS  Google Scholar 

  • De Bruin JPC (1991) Social behaviour and the prefrontal cortex. Prog Brain Res 85:485–497

    Google Scholar 

  • Delville Y, De Vries GJ, Ferris CF (2000) Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol 55:53–76

    CAS  PubMed  Google Scholar 

  • Falkner AL, & Lin D (2014) Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci 8: 1–14. doi.org/https://doi.org/10.3389/fnsys.2014.00168.

  • Ferris CF, Melloni RHJ, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fhager B, Meiri IM, Sjögren M, Edman A (2003) Treatment of aggressive behavior in dementia with the anticonvulsant topiramate: a retrospective pilot study. Int Psychogeriatr 15:307–309

    PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Gammie SC, Hasen NS, Stevenson SA, Bale TL, D’Anna KL (2005) Elevated stress sensitivity in corticotropin-releasing factor receptor 2 deficient mice decreases maternal, but not intermale aggression. Behav. Brain. Res. 160:169–177. https://doi.org/10.1016/j.bbr.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JW, Sombati S, DeLorenzo RJ, Coulter DA (2000) Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 41:S10–S16

    CAS  PubMed  Google Scholar 

  • Gobbi G, Gaudreau PO, Leblanc N (2006) Efficacy of topiramate, valproate, and their combination on aggression/agitation behavior in patients with psychosis. J Clin Psychopharmacol 26:467–473. https://doi.org/10.1097/01.jcp.0000237945.35022.45

    Article  CAS  PubMed  Google Scholar 

  • Gregg TR, Siegel A (2001) Brain structures and neurotansmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 25:91–140

    CAS  PubMed  Google Scholar 

  • Gryder DS, Rogawski MA (2003) Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J Neurosci. 23(18):7069–7074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halász J, Liposits Z, Kruk MR, Haller J (2002) Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: involvement of fear- and stress-related structures. Eur J Neurosci 15:561–569

    PubMed  Google Scholar 

  • Haller J, Kruk MR (2006) Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci Biobehav Rev 30:292–303

    PubMed  Google Scholar 

  • Haller J, Mikics E, Halász J, Töth M (2005) Mechanisms differentiating normal from abnormal aggression: glucocorticoids and serotonin. Eur J Pharmacol 526:89–100. https://doi.org/10.1016/j.ejphar.2005.09.064

    Article  CAS  PubMed  Google Scholar 

  • Hasen NS, Gammie SC (2005) Differential fos activation in virgin and lactating mice in response to an intruder. Physiol Behav 84:684–695. https://doi.org/10.1016/j.physbeh.2005.02.010

    Article  CAS  Google Scholar 

  • Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45

    CAS  PubMed  Google Scholar 

  • Jager, A., Amiri, H., Bielczyk, N., van Heukelum, S., Heerschap, A., Aschrafi, A., & Glennon, J. C (2017). Cortical control of aggression: GABA signalling in the anterior cingulate cortex. Eur Neuropsychopharcol, 12, 924-977.

  • Janowsky DS, Kraus JE, Barnhill J, Elamir B, Davis JM (2003) Effects of topiramate on aggressive, self-injurious, and disruptive/destructive behaviors in the intellectually disabled: an open-label retrospective study. J Clin Psychopharmacol 23:500–504. https://doi.org/10.1097/01.jcp.0000088906.24613.76

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Ait-Daoud N (2010) Topiramate in the new generation of drugs: efficacy in the treatment of alcoholic patients. Curr Pharm Des 16:2103–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BA, Ait-Daoud N, Bowden CL, DiClemente CC, Roache JD, Lawson K, Javors MA, Ma JZ (2003) Oral topiramate for treatment of alcohol dependence: a randomised controlled trial. Lancet 361:1677–1685. https://doi.org/10.1016/S0140-6736(03)13370-3

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Nutt DJ (2007) Role of GABA in anxiety and depression. Depression and anxiety 24:495–517

    CAS  PubMed  Google Scholar 

  • Kollack-Walker S, Newman SW (1995) Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neurosci 66:721–736

    CAS  Google Scholar 

  • Krisak M (1979) Effects of drug on behaviour of aggressive mice. British J Pharmacol 65:525–533

    Google Scholar 

  • Kruk MR (1991) Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci Biobehav Rev 15:527–538

    CAS  PubMed  Google Scholar 

  • Kruk MR, Van der Laan CE, Mos J, Van der Poel AM, Meelis W, Olivier B (1984) Comparison of aggressive behaviour induced by electrical stimulation in the hypothalamus of male and female rats. Prog Brain Res 61:303–314. https://doi.org/10.1016/S0079-6123(08)64443-X

    Article  CAS  PubMed  Google Scholar 

  • Kuo SH, Jimenez-Shahed J (2010) Topiramate in treatment of Tourette syndrome. Clin Neuropharmacol 33:32–34. https://doi.org/10.1097/WNF.0b013e3181c295c1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamontagne SJ, Olmstead MC, Menard JL (2016) The lateral septum and anterior hypothalamus act in tandem to regulate burying in the shock-probe test but not open-arm avoidance in the elevated plus-maze. Behav Brain Res, https://doi.org/10.1016/j.bbr.2016.07.034

  • Lane SD, Gowin JL, Green CE, Steinberg JL, Moeller FG, Cherek DR (2009) Acute topiramate differentially affects human aggressive responding at low vs moderate doses in subjects with histories of substance abuse and antisocial behavior. Pharmacology, Biochemistry and Behavior 92(2):357–362. https://doi.org/10.1016/j.pbb.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  • Lapiz-Bluhm MDS, Bondi CO, Doyen J, Rodriguez GA, Bédard-Arana T, Morilak DA (2008) Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J. Neuroendocrinology 20(10):1115–1137. https://doi.org/10.1111/j.1365-2826.2008.01772

    Article  CAS  Google Scholar 

  • Lee G, Gammie SC (2009) GABA A receptor signaling in the lateral septum regulates maternal aggression in mice. Behav Neurosci 123:1169–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Gammie SC (2010) GABA A receptor signaling in caudal periaqueductal gray regulates maternal aggression and maternal care in mice. Behav Brain Res 213:230–237. https://doi.org/10.1016/j.bbr.2010.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226. https://doi.org/10.1038/nature09736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipp HP, Hunsperger RW (1978) Threat, attack and flight elicited by electrical stimulation of the ventromedial hypothalamus of the marmoset monkey Callithrix jacchus. Brain Behav Evol 15:276–293

    Google Scholar 

  • Lonstein JS (2007) Regulation of anxiety during the postpartum period. Front neuroendocrine 28:115–141

    Google Scholar 

  • Maidment ID (2002) The use of topiramate in mood stabilization. Ann Pharmacotherap 36:1277–1281. https://doi.org/10.1345/aph.1A398

    Article  CAS  Google Scholar 

  • Martijena ID, Manzanares R, Lacerra CMVA, Molina VA (2002) Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse 45:86–94

    CAS  PubMed  Google Scholar 

  • Martinez M, Phillips PJ, Herbert J (1998) Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats. Eur J Neurosci 10:20–33

    CAS  PubMed  Google Scholar 

  • Martín-López M, Navarro JF (1996) Behavioural profile of clobazam in agonistic encounters between male mice. Med Sci Res 24:89–91

    Google Scholar 

  • Martín-López M, Navarro JF (1997) Acute and chronic effects of diazepam on agonistic encounters between male mice. Med Sci Res 25:667–669

    Google Scholar 

  • Martín-López M, Navarro JF (1998) Behavioural profile of bentazepam, an anxiolytic benzodiazepine, in social encounters between male mice. Med Sci Res 26:335–337

    Google Scholar 

  • Martín-López M, Navarro JF (1999) Efectos de la administración de midazolam sobre la conducta agonística en ratones machos. Psicothema 11(2)

  • Martín-López M, Navarro JF (2002) Antiaggressive effects of zolpidem and zopiclone in agonistic encounters between male mice. Aggressive Behav 28:416–425

    Google Scholar 

  • McDonald MM, Markham CM, Norvelle A, Albers HE, Huhman KL (2012) GABA A receptor activation in the lateral septum reduces the expression of conditioned defeat and increases aggression in Syrian hamsters. Brain Res 1439:27–33. https://doi.org/10.1016/j.brainres.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  • Melloni RHJ, Ricci LA (2010) Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 58:177–191

    CAS  PubMed  Google Scholar 

  • Mennini T, Gobbi M (1990) Regional distribution of low-affinity GABA receptors coupled to benzodiazepine receptor subtypes in rat brain: an autoradiographic evaluation. Eur J Pharmacol 189:143–148

    CAS  PubMed  Google Scholar 

  • Mercik K, Zarnowska ED, Mandat M, Mozrzymas JW (2002) Saturation and self-inhibition of rat hippocampal GABA(A) receptors at high GABA concentrations. Eur J Neurosci. 16:2253e2259

    Google Scholar 

  • Miczek KA, Fish EW, Joseph F, De Almeida RM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacol 163:434–458. https://doi.org/10.1007/s00213-002-1139-6

    Article  CAS  Google Scholar 

  • Miczek KA, De Almeida RM, Kravitz EA, Rissman EF, de Boer SF, Raine A (2007) Neurobiology of escalated aggression and violence. J Neurosci 27:11803–11806. https://doi.org/10.1523/JNEUROSCI.3500-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möhler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacol 62:42–53. https://doi.org/10.1016/j.neuropharm.2011.08.040

    Article  CAS  Google Scholar 

  • Morrison TR, Ricci LA, Melloni RH Jr (2013) GABA neural signaling in the latero-anterior hypothalamus modulates aggressive behavior in adolescent anabolic/androgenic steroid-treated hamsters. Behav Pharmacol 185(2):974–981. https://doi.org/10.1097/FBP.0000000000000083

    Article  CAS  Google Scholar 

  • Navarro JF, Manzaneque JM (1997) Acute and subchronic effects of tiapride on isolation-induced aggression in male mice. Pharmacol Biochem Behav 58:255–259

    CAS  PubMed  Google Scholar 

  • Navarro JF, Burón E, Martín-López M (2004) Behavioral profile of L655,708, a selective ligand for the benzodiazepine site of GABAA receptors which contain the α5 subunit, in social encounters between male mice. Aggressive Behav 30:319–325

    CAS  Google Scholar 

  • Navarro JF, Buron E, Martin-Lopez M (2007) Antiagressive effects of topiramate in agonistic encounters between male mice. Methods Find Exp Clin Pharmacol 29:195–198. https://doi.org/10.1358/mf.2007.29.3.1075351

    Article  CAS  PubMed  Google Scholar 

  • Nickel MK, Nickel C, Mitterlehner FO, Tritt K, Lahmann C, Leiberich PK, Rother WK, Loew TH (2004) Topiramate treatment of aggression in female borderline personality disorder patients: a double-blind, placebo-controlled study. J Clin Psychiatry 65:1515–1519

    CAS  PubMed  Google Scholar 

  • Nickel MK, Nickel C, Kaplan P, Lahmann C, Muhlbacher M, Tritt K, Krawczyk J, Leiberich PK, Rother WK, Loew TH (2005) Treatment of aggression with topiramate in male borderline patients: a double-blind, placebo-controlled study. Biol Psychiatry 57:495499–495499. https://doi.org/10.1016/j.biopsych.2004.11.044

    Article  CAS  Google Scholar 

  • Olivier B, Young LJ (2002) Animal models of aggression. Neuropsychopharmacology: The fifth generation of progress 118:1699–1708

    Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci 101(4):815–850

    CAS  Google Scholar 

  • Poulsen CF, Simeone TA, Maar TE, Smith-Swintosky V, White HS, Schousboe A (2004) Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem Res 29:275–282

    CAS  PubMed  Google Scholar 

  • Puglisi-Allegra S, Simler S, Kempf E, Mandel P (1981) Involvement of the GABAergic system on shock-induced aggressive behavior in two strains of mice. Pharmacol Biochem Behav 14:13–18

    CAS  PubMed  Google Scholar 

  • Pytel M, Mercik K, Mozrzymas JW (2006) Membrane voltage modulates the GABA(A) receptor gating in cultured rat hippocampal neurons. Neuropharmacology. 50:143–153. https://doi.org/10.1016/j.neuropharm.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  • Rho JM, Donevan SD, Rogawski MA (1996) Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J. Physiol. 497:509e522

    Google Scholar 

  • Shank RP, Maryanoff BE (2008) Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther 14:120–142. https://doi.org/10.1111/j.1527-3458.2008.00041.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shively CA, Silverstein-Metzler M, Justice J, Willard SL (2017) The impact of treatment with selective serotonin reuptake inhibitors on primate cardiovascular disease, behavior, and neuroanatomy. Neurosci Biobehav Rev 74:433–443. https://doi.org/10.1016/j.neubiorev.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  • Siegel A, Edinger HM (1983) Role of the limbic system in hypothalamically elicited attack behavior. Neurosci Biobehav Rev 7:395–407

    CAS  PubMed  Google Scholar 

  • Siegel A, Victoroff J (2009) Understanding human aggression: new insights from neuroscience. Int J Law Psychiatry 32:209–215. https://doi.org/10.1016/j.ijlp.2009.06.001

    Article  PubMed  Google Scholar 

  • Siegel A, Roeling TAP, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389

    CAS  PubMed  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165(4):429–442

    PubMed  PubMed Central  Google Scholar 

  • Simeone TA, Wilcox KS, & White HS (2006) Subunit selectivity of topiramate modulation of heteromeric GABAA receptors. Neuropharma 50(7), 845–857. doi.org/https://doi.org/10.1016/j.neuropharm.2005.12.006.

  • Simeone TA, Wilcox KS, White HS (2011) Topiramate modulation of β1- and β3-homomeric GABAA receptors. Pharma Res 64(1):44–52. https://doi.org/10.1016/j.phrs.2011.03.004

    Article  CAS  Google Scholar 

  • Simler S, Puglisi-Allegra S, Mandel P (1983) Effects of n-di-propyl-acetate on aggressive behavior and brain GABA level in isolated mice. Pharmacol Biochem Behav 18:717–720

    CAS  PubMed  Google Scholar 

  • Smith KS, Rudolph U (2012) Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA A receptor subtypes. Neuropharmacol 62:54–62. https://doi.org/10.1016/j.neuropharm.2011.07.026

    Article  CAS  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    CAS  PubMed  Google Scholar 

  • Van der Vegt BJ, Lieuwes N, van de Wall EH, Kato K, Moya-Albiol L, Martínez-Sanchis S, de Boer SF, Koolhaas JM (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    PubMed  Google Scholar 

  • Van Loo PLP, Kruitwagen CLJJ, Van Zutphen LFM, Koolhaas JM, Baumans V (2000) Modulation of aggression in male mice: influence of cage cleaning regime and scent marks. Anim Welfare 9:281–295

    Google Scholar 

  • van Schalkwyk GI, Beyer C, Johnson J, Deal M, Bloch MH (2017) Antipsychotics for aggression in adults: a meta-analysis. Prog. Neuropsychopharmacol Biol Psychiatry doi 81:452–458. https://doi.org/10.1016/j.pnpbp.2017.07.019

    Article  CAS  Google Scholar 

  • Veenema AH, Neumann ID (2007) Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav Evol 70:274–285. https://doi.org/10.1159/000105491

    Article  PubMed  Google Scholar 

  • Veenema AH, Bredewold R, Neumann ID (2007) Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinol 32:437–450. https://doi.org/10.1016/j.psyneuen.2007.02.008

    Article  CAS  Google Scholar 

  • Veening JG, Coolen LM, de Jong TR, Joosten HW, de Boer SF, Koolhaas JM, Olivier B (2005) Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur J Pharmacol 526:226–239. https://doi.org/10.1016/j.ejphar.2005.09.041

    Article  CAS  PubMed  Google Scholar 

  • Von Seggern RL, Mannix LK, Adelman JU (2002) Efficacy of topiramate in migraine prophylaxis: a retrospective chart analysis. Headache 42:804–809

    Google Scholar 

  • Wong LC, Wang L, Amour JAD, Feng JE, Froemke RC, Lin D, Chang BC (2016) Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Current Biology 26:1–12. https://doi.org/10.1016/j.cub.2015.12.065

    Article  CAS  Google Scholar 

  • Wooltorton JRA, Moss SJ, Smart TG (1997) Pharmacological and physiological characterization of murine homomeric b3 GABAA receptors. Eur J Neurosci. 9:2225e2235

    Google Scholar 

  • World Health Organization: Third milestones of a global campaign for violence prevention report 2007: scaling up. Geneva, Switzerland, WHO, 2007.

  • Zhao C, Eisinger B, Gammie SC (2013) Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PloS One 8:e73750. https://doi.org/10.1371/journal.pone.0073750 eCollection 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhaoa C, Gammie SC (2014) Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 71(2):233–236. https://doi.org/10.1016/j.brainres.2014.10.023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bennis.

Ethics declarations

All procedures were conducted in accordance with approved institutional protocols, and with the provisions for animal care and use scientific procedures prescribed by European Council Directive EU2010/63. All efforts were made to minimize any animal suffering, and the study met ethical standards. The study was approved by the Council Committee of Research Laboratories of the Faculty of Sciences, Cadi Ayyad University, Marrakesh.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchatta, O., Chaibi, I., Baba, A.A. et al. The effects of Topiramate on isolation-induced aggression: a behavioral and immunohistochemical study in mice. Psychopharmacology 237, 2451–2467 (2020). https://doi.org/10.1007/s00213-020-05546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05546-4

Keywords

Navigation