Skip to main content

Advertisement

Log in

A comprehensive insight into the anti-inflammatory properties of dapsone

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The 4,4′-diaminodiphenyl sulfone (DDS), also known as dapsone, is traditionally used as a potent anti-bacterial agent in clinical management of leprosy. For decades, dapsone has been among the first-line medications used in multidrug treatment of leprosy recommended by the World Health Organization (WHO). Shortly after dapsone’s discovery as an antibiotic in 1937, the dual function of dapsone (anti-microbial and anti-inflammatory) was elucidated. Dapsone exerts its anti-bacterial effects by inhibiting dihydrofolic acid synthesis, leading to inhibition of bacterial growth, while its anti-inflammatory properties are triggered by inhibiting reactive oxygen species (ROS) production, reducing the effect of eosinophil peroxidase on mast cells and downregulating neutrophil-mediated inflammatory responses. Among the leading mechanisms associated with its anti-microbial/anti-protozoal effects, dapsone clearly has multiple antioxidant, anti-inflammatory, and anti-apoptotic functions. In this regard, it has been described in treating a wide variety of inflammatory and infectious skin conditions. Previous reports have explored different molecular targets for dapsone and provided insight into the anti-inflammatory mechanism of dapsone. This article reviews several basic, experimental, and clinical approaches on anti-inflammatory effect of dapsone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Available upon request.

Code availability

Not applicable.

References

  • Abdelzaher WY, et al. (2021) Dapsone ameliorates isoproterenol-induced myocardial infarction via Nrf2/ HO-1; TLR4/ TNF-α signaling pathways and the suppression of oxidative stress, inflammation, and apoptosis in rats. Front Pharmacol 12

  • Abe M et al (2008) A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-alpha production from activated mononuclear cells on cutaneous lupus erythematosus. Clin Exp Dermatol 33(6):759–763

    Article  CAS  PubMed  Google Scholar 

  • Ahmad RA, Rogers HJ (1980) Pharmacokinetics and protein binding interactions of dapsone and pyrimethamine. Br J Clin Pharmacol 10(5):519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ash-Bernal R, Wise R, Wright SM (2004) Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine (baltimore) 83(5):265–273

    Article  Google Scholar 

  • Barranco VP (1982) Dapsone–other indications. Int J Dermatol 21(9):513–514

    Article  CAS  PubMed  Google Scholar 

  • Bell D (1980) Chemoprophylaxis in malaria. J Antimicrob Chemother 6(1):7–9

    Article  CAS  PubMed  Google Scholar 

  • Berlow BA et al (1991) The effect of dapsone in steroid-dependent asthma. J Allergy Clin Immunol 87(3):710–715

    Article  CAS  PubMed  Google Scholar 

  • Bonney RJ et al (1983) Inhibition of the release of prostaglandins, leukotrienes and lysosomal acid hydrolases from macrophages by selective inhibitors of lecithin biosynthesis. Biochem Pharmacol 32(2):361–366

    Article  CAS  PubMed  Google Scholar 

  • Booth SA et al (1992) Dapsone suppresses integrin-mediated neutrophil adherence function. J Invest Dermatol 98(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Bouscarat F et al (1996) Treatment of bullous pemphigoid with dapsone: retrospective study of thirty-six cases. J Am Acad Dermatol 34(4):683–684

    Article  CAS  PubMed  Google Scholar 

  • Bozeman PM, Learn DB, Thomas EL (1992) Inhibition of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase by dapsone. Biochem Pharmacol 44(3):553–563

    Article  CAS  PubMed  Google Scholar 

  • Byrd SR, Gelber R (1991) Effect of dapsone on haemoglobin concentration in patients with leprosy. Lepr Rev 62(2):171–178

    CAS  PubMed  Google Scholar 

  • Carswell EA et al (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72(9):3666–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitra P et al (2013) Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: a biphasic experimental study. Toxicol Lett 219(2):178–193

    Article  CAS  PubMed  Google Scholar 

  • Cho SC et al (2010a) Suppression of ROS generation by 4,4’-diaminodiphenylsulfone in non-phagocytic human diploid fibroblasts. Exp Mol Med 42(3):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SC et al (2010b) Suppression of ROS generation by 4,4-diaminodiphenylsulfone in non-phagocytic human diploid fibroblasts. Exp Mol Med 42(3):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane R et al (1949) Two-and-a-half years’ experimental work on the sulphone group of drugs. Lepr Rev 20(1/2):4–64

    Google Scholar 

  • Coleman MD (1993) Dapsone: modes of action, toxicity and possible strategies for increasing patient tolerance. Br J Dermatol 129(5):507–513

    Article  CAS  PubMed  Google Scholar 

  • Cucinell S, Israili Z, Dayton P (1972) Microsomal N-oxidation of dapsone as a cause of methemoglobin formation in human red cells. Am J Trop Med Hyg 21(3):322–331

    Article  CAS  PubMed  Google Scholar 

  • DeForge LE et al (1992) Oxygen radical scavengers selectively inhibit interleukin 8 production in human whole blood. J Clin Invest 90(5):2123–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degowin RL et al (1966) The haemolytic effects of diaphenylsulfone (DDS) in normal subjects and in those with glucose-6-phosphate-dehydrogenase deficiency. Bull World Health Organ 35(2):165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dejban P et al (2019) Beneficial effects of dapsone on ischemia/reperfusion injury following torsion/detorsion in ipsilateral and contralateral testes in rat. Theriogenology 140:136–142

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ruiz A et al (2008) Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats. J Neurosci Res 86(15):3410–3419

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ruiz A et al (2013) Antioxidant, anticonvulsive and neuroprotective effects of dapsone and phenobarbital against kainic acid-induced damage in rats. Neurochem Res 38(9):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ruiz A et al (2016) Dapsone improves functional deficit and diminishes brain damage evaluated by 3-Tesla magnetic resonance image after transient cerebral ischemia and reperfusion in rats. Brain Res 1646:384–392

    Article  CAS  PubMed  Google Scholar 

  • Dzoyem JP, et al. (2017) Chapter 9 - anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables, in Medicinal Spices and Vegetables from Africa, V. Kuete, Editor, Academic Press. p. 239–270

  • Faghihi G et al (2015) Dapsone gel in the treatment of Papulopustular rosacea: a double-blind randomized clinical trial. J Drugs Dermatol 14(6):602–606

    CAS  PubMed  Google Scholar 

  • Farid A et al (2022) Evaluation of anti-inflammatory effects of leaf and seed extracts of Plantago major on acetic acid-induced ulcerative colitis in rats. J Ethnopharmacol 298:115595

    Article  CAS  PubMed  Google Scholar 

  • Fischer M. (2017) Leprosy – an overview of clinical features, diagnosis, and treatment. JDDG: J der Deutschen Dermatologischen Gesellschaft 15(8): p. 801–827

  • Fry L, Seah PP, Hoffbrand AV (1974) Dermatitis herpetiformis. Clin Gastroenterol 3(1):145–157

    Article  CAS  PubMed  Google Scholar 

  • Galijasevic S (2019) The development of myeloperoxidase inhibitors. Bioorg Med Chem Lett 29(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Gemmell DK, Cottney J, Lewis AJ (1979) Comparative effects of drugs on four paw oedema models in the rat. Agents Actions 9(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Ghaoui N et al (2020) Update on the use of dapsone in dermatology. Int J Dermatol 59(7):787–795

    Article  CAS  PubMed  Google Scholar 

  • Ghislain P.-D, Roujeau J.-C (2002) Treatment of severe drug reactions: Stevens-Johnson syndrome, toxic epidermal necrolysis and hypersensitivity syndrome. Dermatol Online J 8(1)

  • Grabbe J et al (2000) Erythema elevatum diutinum–evidence for disease-dependent leucocyte alterations and response to dapsone. Br J Dermatol 143(2):415–420

    Article  CAS  PubMed  Google Scholar 

  • Gürcan HM, Ahmed AR (2009) Efficacy of dapsone in the treatment of pemphigus and pemphigoid. Am J Clin Dermatol 10(6):383–396

    Article  PubMed  Google Scholar 

  • Harvath L, Yancey KB, Katz SI (1986) Selective inhibition of human neutrophil chemotaxis to N-formyl-methionyl-leucyl-phenylalanine by sulfones. J Immunol 137(4):1305–1311

    CAS  PubMed  Google Scholar 

  • Homeida M, Babikr A, Daneshmend TK (1980) Dapsone-induced optic atrophy and motor neuropathy. Br Med J 281(6249):1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AP, Callen JP (2001) Epidermolysis bullosa acquisita responsive to dapsone therapy. J Cutan Med Surg 5(5):397–399

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MA et al (2021) Diacerein protects rats with liver ischemia/reperfusion damage: down-regulation of TLR4/NFκ-B signaling pathway. Biomed Pharmacother 134:111063

    Article  CAS  PubMed  Google Scholar 

  • Jeffes E, Ahmed A (1989) Adjuvant therapy of bullous pemphigoid with dapsone. Clin Exp Dermatol 14(2):132–136

  • Kannan G et al (2009) Drug usage evaluation of dapsone. Indian J Pharm Sci 71(4):456–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoh S, Tanabe T, Rubin BK (2011) Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest 140(4):980–990

    Article  CAS  PubMed  Google Scholar 

  • Kar BR (2008) Dapsone-induced photosensitivity: a rare clinical presentation. Photodermatol Photoimmunol Photomed 24(5):270–271

    Article  PubMed  Google Scholar 

  • Karaguzel E, Kadihasanoglu M, Kutlu O (2014) Mechanisms of testicular torsion and potential protective agents. Nat Rev Urol 11(7):391–399

    Article  CAS  PubMed  Google Scholar 

  • Kazmierowski JA et al (1984) Dermatitis herpetiformis: effects of sulfones and sulfonamides on neutrophil myeloperoxidase-mediated iodination and cytotoxicity. J Clin Immunol 4(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Kettle AJ, Winterbourn CC (1991) Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochem Pharmacol 41(10):1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Kettle AJ, Gedye CA, Winterbourn CC (1993) Superoxide is an antagonist of anti-inflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase. Biochem Pharmacol 45(10):2003–2010

    Article  CAS  PubMed  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625

    Article  CAS  PubMed  Google Scholar 

  • Koller WC et al (1977) Dapsone-induced peripheral neuropathy. Arch Neurol 34(10):644–646

    Article  CAS  PubMed  Google Scholar 

  • Kölükçü E et al (2021) Dapsone can be a new treatment option for reducing the detrimental effect of priapism. J Sci Med 4(6):800–808

    Google Scholar 

  • Kosseifi SG et al (2006) The Dapsone hypersensitivity syndrome revisited: a potentially fatal multisystem disorder with prominent hepatopulmonary manifestations. J Occup Med Toxicol 1:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon MJ, Joo HG (2018) Dapsone modulates lipopolysaccharide-activated bone marrow cells by inducing cell death and down-regulating tumor necrosis factor-α production. J Vet Sci 19(6):744–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Lammers AM et al (1986) Elastase, a marker for neutrophils in skin infiltrates. Br J Dermatol 115(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Lashgari N-A et al (2021) Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 48(1):855–874

    Article  CAS  PubMed  Google Scholar 

  • Lee BL et al (1989) Dapsone, trimethoprim, and sulfamethoxazole plasma levels during treatment of Pneumocystis pneumonia in patients with the acquired immunodeficiency syndrome (AIDS) Evidence of drug interactions. Ann Intern Med 110(8):606–611

    Article  CAS  PubMed  Google Scholar 

  • Leonard JN, Fry L (1991) Treatment and management of dermatitis herpetiformis. Clin Dermatol 9(3):403–408

    Article  CAS  PubMed  Google Scholar 

  • Lewis AJ (1978) A comparison of the anti-inflammatory effects of copper aspirinate and other copper salts in the rat and guinea pig. Agents Actions 8(3):244–250

    Article  CAS  PubMed  Google Scholar 

  • Lewis AJ, Gemmell DK, Stimson WH (1978) The anti-inflammatory profile of dapsone in animal models of inflammation. Agents Actions 8(6):578–586

    Article  CAS  PubMed  Google Scholar 

  • Liu T, De Los Santos FG, Phan SH (2017) The bleomycin model of pulmonary fibrosis, in Fibrosis, Springer. p. 27–42

  • Maloff BL et al (1988) Dapsone inhibits LTB4 binding and bioresponse at the cellular and physiologic levels. Eur J Pharmacol 158(1–2):85–89

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa A, Yoshinaga M (1998) Sequential generation of cytokines during the initiative phase of inflammation, with reference to neutrophils. Inflamm Res 47(Suppl 3):S137–S144

    Article  CAS  PubMed  Google Scholar 

  • McLawhorn JM et al (2019) Successful treatment of refractory epidermolysis bullosa acquisita with intravenous immunoglobulin and dapsone. Cutis 104(2):E20–E21

    PubMed  Google Scholar 

  • Merlo G et al (2020) Dapsone for unresponsive granulomatous Rosacea. Am J Ther 27(3):e304–e306

    Article  PubMed  Google Scholar 

  • Mikita N, Furukawa F (2018) Transient effectiveness of dapsone for skin lesions in a patient with discoid lupus erythematosus. Trends Immunotherapy 2(1)

  • Millar BW et al (1984) Dapsone and human polymorphonuclear leucocyte chemotaxis in dermatitis herpetiformis. Acta Derm Venereol 64(5):433–436

    CAS  PubMed  Google Scholar 

  • Millikan LE, Harrell ER (1970) Drug reactions to the sulfones. Arch Dermatol 102(2):220–224

    Article  CAS  PubMed  Google Scholar 

  • Miyachi Y, Niwa Y (1982) Effects of potassium iodide, colchicine and dapsone on the generation of polymorphonuclear leukocyte-derived oxygen intermediates. Br J Dermatol 107(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Miyachi Y, Niwa Y (1983) Effects of psoriatic sera on the generation of oxygen intermediates by normal polymorphonuclear leucocytes. Arch Dermatol Res 275(1):23–26

    Article  CAS  PubMed  Google Scholar 

  • Modschiedler K et al (2000) Dapsone and colchicine inhibit adhesion of neutrophilic granulocytes to epidermal sections. Arch Dermatol Res 292(1):32–36

    Article  CAS  PubMed  Google Scholar 

  • Mohammad Jafari R et al (2018) Drug repositioning: a review. Journal of Iranian Medical Council 1(1):7–10

    Google Scholar 

  • Mohammad Jafari R et al (2021) Dapsone ameliorates colitis through TLR4/NF-kB pathway in TNBS induced colitis model in rat. Arch Med Res 52(6):595–602

    Article  CAS  PubMed  Google Scholar 

  • Mohammad S, et al. (2021) Anti-Inflammatory and antioxidative effects of sumatriptan against doxorubicin-induced cardiotoxicity in rat. Acta Medica Iranica 59(7)

  • Molinelli E et al (2019) Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone. Expert Opin Drug Metab Toxicol 15(5):367–379

    Article  CAS  PubMed  Google Scholar 

  • Murthy S et al (2021) Dapsone suppresses disease in preclinical murine models of pemphigoid diseases. J Invest Dermatol 141(11):2587-2595.e2

    Article  CAS  PubMed  Google Scholar 

  • Nezamoleslami S et al (2020a) Glatiramer acetate attenuates renal ischemia reperfusion injury in rat model. Exp Mol Pathol 112:104329

    Article  CAS  PubMed  Google Scholar 

  • Nezamoleslami S et al (2020b) Protective effect of dapsone against renal ischemia-reperfusion injury in rat. Immunopharmacol Immunotoxicol 42(3):272–279

    Article  PubMed  Google Scholar 

  • Niwa Y, Sakane T, Miyachi Y (1984) Dissociation of the inhibitory effect of dapsone on the generation of oxygen intermediates–in comparison with that of colchicine and various scavengers. Biochem Pharmacol 33(15):2355–2360

    Article  CAS  PubMed  Google Scholar 

  • Noroozi N, et al. (2022) Protective effects of dapsone on scopolamine-induced memory impairment in mice: involvement of nitric oxide pathway. Dementia and Geriatric Cognitive Disorders EXTRA

  • Nürnberg W, Grabbe J, Czarnetzki B (1995) Urticarial vasculitis syndrome effectively treated with dapsone and pentoxifylline. Acta Derm Venereol 75(1):54–56

    PubMed  Google Scholar 

  • Ogé LK, Broussard A, Marshall MD (2019) Acne vulgaris: diagnosis and treatment. Am Fam Physician 100(8):475–484

    PubMed  Google Scholar 

  • Pfeiffer C, Wozel G (2003) Dapsone and sulfones in dermatology: overview and update. J Am Acad Dermatol 48(2):308–309

    Article  PubMed  Google Scholar 

  • Phillips-Howard P, West L (1990) Serious adverse drug reactions to pyrimethamine-sulphadoxine, pyrimethamine-dapsone and to amodiaquine in Britain. J R Soc Med 83(2):82–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prussick R, Shear NH (1996) Dapsone hypersensitivity syndrome. J Am Acad Dermatol 35(2 Pt 2):346–349

    Article  CAS  PubMed  Google Scholar 

  • Quaresma MV et al (2015) Dapsone in the treatment of pemphigus vulgaris: adverse effects and its importance as a corticosteroid sparing agent. An Bras Dermatol 90:51–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashidian A et al (2019) Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol Immunotoxicol 41(6):607–613

    Article  CAS  PubMed  Google Scholar 

  • Reunala TL (2001) Dermatitis herpetiformis. Clin Dermatol 19(6):728–736

    Article  CAS  PubMed  Google Scholar 

  • Rhodes L, Coleman M, Lewis-Jones M (1995) Dapsone-induced motor peripheral neuropathy in pemphigus foliaceus. Clin Exp Dermatol 20(2):155–156

    Article  CAS  PubMed  Google Scholar 

  • Ríos C et al (2019) Efficacy of dapsone administered alone or in combination with diazepam to inhibit status epilepticus in rats. Brain Res 1708:181–187

    Article  PubMed  Google Scholar 

  • Rivero AL, Whitfeld M (2018) An update on the treatment of rosacea. Aust Prescr 41(1):20

    Article  PubMed  Google Scholar 

  • Ruzicka T et al (1981) Effects of dapsone on passive Arthus reaction and chemotaxis and phagocytosis of polymorphonuclear leukocytes. Arch Dermatol Res 270(3):347–351

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka T et al (1983) Inhibition of rat mast cell arachidonic acid cyclooxygenase by dapsone. J Allergy Clin Immunol 72(4):365–370

    Article  CAS  PubMed  Google Scholar 

  • Sago J, Hall RP III (2002) Dapsone. Dermatol Ther 15(4):340–351

    Article  Google Scholar 

  • Saqueton AC et al (1969) Dapsone and peripheral motor neuropathy. Arch Dermatol 100(2):214–217

    Article  CAS  PubMed  Google Scholar 

  • Schmidt E et al (2001) The IL-8 release from cultured human keratinocytes, mediated by antibodies to bullous pemphigoid autoantigen 180, is inhibited by dapsone. Clin Exp Immunol 124(1):157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle T, Al-Niaimi F, Ali FR (2021) Dapsone for acne: still in use after half a century! J Cosmet Dermatol 20(7):2036–2039

    Article  PubMed  Google Scholar 

  • Shamma RN, Salah Ad-din I, Abdeltawab NF (2019) Dapsone- gel as a novel platform for acne treatment: in vitro evaluation and in vivo performance and histopathological studies in acne infected mice. J Drug Deliv Sci Technol 54:101238

  • Sheibani M et al (2019) Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology 27(5):1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Sheibani M et al (2020) Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 85(3):563–571

    Article  CAS  PubMed  Google Scholar 

  • Sheibani M, et al. (2022) Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol

  • Sheibani M, et al. (2021) The protective effect of dapsone against ethanol, stress, and indomethacin-induced gastric erosion in rats. Acta Medica Iranica 59(6)

  • Silvestrini B et al (1967) Brewers yeast-induced inflammation in rats: investigation on some humoral and functional changes. Boll Chim Farm 106(6):385–397

    CAS  PubMed  Google Scholar 

  • Sivinski SE et al (2020) Development of an in vitro macrophage screening system on the immunomodulating effects of feed components. J Anim Sci Biotechnol 11(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stendahl O, Molin L, Lindroth M (1983) Granulocyte-mediated release of histamine from mast cells. Int Arch Allergy Immunol 70(3):277–284

    Article  CAS  Google Scholar 

  • Sticherling M et al (2017) An open, multicentre, randomized clinical study in patients with bullous pemphigoid comparing methylprednisolone and azathioprine with methylprednisolone and dapsone. Br J Dermatol 177(5):1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Tempark T et al (2017) Dapsone-induced severe cutaneous adverse drug reactions are strongly linked with HLA-B*13: 01 allele in the Thai population. Pharmacogenet Genomics 27(12):429–437

    Article  CAS  PubMed  Google Scholar 

  • Thieme M et al (2019) The sphingosine-1-phosphate receptor modulator fingolimod aggravates murine epidermolysis Bullosa Acquisita. J Invest Dermatol 139(11):2381-2384.e3

    Article  CAS  PubMed  Google Scholar 

  • Thuong-Nguyen V et al (1993) Inhibition of neutrophil adherence to antibody by dapsone: a possible therapeutic mechanism of dapsone in the treatment of IgA dermatoses. J Invest Dermatol 100(4):349–355

    Article  CAS  PubMed  Google Scholar 

  • Tingle MD et al (1997) Comparison of the metabolism and toxicity of dapsone in rat, mouse and man. J Pharmacol Exp Ther 283(2):817–823

    CAS  PubMed  Google Scholar 

  • Toker I et al (2015) Methemoglobinemia caused by dapsone overdose: which treatment is best? Turk J Emerg Med 15(4):182–184

    Article  PubMed  Google Scholar 

  • Turchin I, Barankin B (2005) Dermatitis herpetiformis and gluten free diet: a quick review. Dermatol Online J 11(1)

  • Uetrecht J et al (1988) Metabolism of dapsone to a hydroxylamine by human neutrophils and mononuclear cells. J Pharmacol Exp Ther 245(1):274–279

    CAS  PubMed  Google Scholar 

  • Vardanyan R, Hruby V (2006) Synthesis of essential drugs. Elsevier.

  • Venning V, Millard P, Wojnarowska F (1989) Dapsone as first line therapy for bullous pemphigoid. Br J Dermatol 120(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Venzor J, Lee WL, Huston DP (2002) Urticarial vasculitis. Clin Rev Allergy Immunol 23(2):201–216

    Article  PubMed  Google Scholar 

  • von Ritter C, Grisham MB, Granger DN (1989) Sulfasalazine metabolites and dapsone attenuate formyl-methionyl-leucyl-phenylalanine-induced mucosal injury in rat ileum. Gastroenterology 96(2):811–816

    Article  Google Scholar 

  • Webster GF et al (1984) Inhibition of chemiluminescence in human neutrophils by dapsone. Br J Dermatol 110(6):657–663

    Article  CAS  PubMed  Google Scholar 

  • Werth VP et al (2008) Multicenter randomized, double-blind, placebo-controlled, clinical trial of dapsone as a glucocorticoid-sparing agent in maintenance-phase pemphigus vulgaris. Arch Dermatol 144(1):25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams P et al (1997) Characterization of renal ischemia-reperfusion injury in rats. J Pharmacol Toxicol Methods 37(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Wolf R, Tüzün B, Tüzün Y (2000) Dapsone: unapproved uses or indications. Clin Dermatol 18(1):37–53

    Article  CAS  PubMed  Google Scholar 

  • Wolf R et al (2002) Dapsone. Dermatol Online J 8(1):2

    PubMed  Google Scholar 

  • Wozel G, Barth J (1988) Current aspects of modes of action of dapsone. Int J Dermatol 27(8):547–552

    Article  CAS  PubMed  Google Scholar 

  • Wozel G, Blasum C (2014) Dapsone in dermatology and beyond. Arch Dermatol Res 306(2):103–124

    Article  CAS  PubMed  Google Scholar 

  • Wozel G, Lehmann B (1995) Dapsone inhibits the generation of 5-lipoxygenase products in human polymorphonuclear leukocytes. Skin Pharmacol 8(4):196–202

    Article  CAS  PubMed  Google Scholar 

  • Wozel G et al (1997) Dapsone hydroxylamine inhibits the LTB4-induced chemotaxis of polymorphonuclear leukocytes into human skin: results of a pilot study. Inflamm Res 46(10):420–422

    Article  CAS  PubMed  Google Scholar 

  • Wozel G (1996) Dapson: Pharmakologie, Wirkmechanismus und klinischer Einsatz; 34 Tabellen. Thieme

  • Yang N et al (2017) Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. Neurosci Lett 649:85–92

    Article  CAS  PubMed  Google Scholar 

  • Yousefi-Manesh H et al (2022) Protective effect of dapsone against bleomycin-induced lung fibrosis in rat. Exp Mol Pathol 124:104737

    Article  CAS  PubMed  Google Scholar 

  • Yousefi-Manesh H et al. (2021) Therapeutic effects of hydroalcoholic extracts from the ancient apple Mela Rosa dei Monti Sibillini in transient global ischemia in rats. Pharmaceuticals (Basel) 14(11)

  • Zampeli E, Moutsopoulos HM (2019) Dapsone: an old drug effective for subacute cutaneous lupus erythematosus. Rheumatology 58(5):920–921

    Article  PubMed  Google Scholar 

  • Zhan R et al (2018) Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation. Cell Death Dis 9(6):683

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang T et al (2015) Surgical stress induced depressive and anxiety like behavior are improved by dapsone via modulating NADPH oxidase level. Neurosci Lett 585:103–108

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2019) Regiospecific cleavage of S-N bonds in sulfonyl azides: sulfonyl donors. J Org Chem 84(7):3919–3926

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, et al. (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative medicine and cellular longevity, 2014

  • Zhu YI, Stiller MJ (2001) Dapsone and sulfones in dermatology: overview and update. J Am Acad Dermatol 45(3):420–434

    Article  CAS  PubMed  Google Scholar 

  • Zuidema J, Hilbers-Modderman ES, Merkus FW (1986) Clinical pharmacokinetics of dapsone. Clin Pharmacokinet 11(4):299–315

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Iran National Sciences Foundation (INSF).

Author information

Authors and Affiliations

Authors

Contributions

AD and MS conceived and designed the study (the idea of the study). MSh, SJ, and MR performed the literature search and data analysis. MS and MK drafted the manuscript and edited it. MS, MK, and MSh prepared Table 1. MSh and MK made critical revision and edited the manuscript. MS prepared all the figures. AD, MK, and MSh made the final editions to the paper prior the submission. All the authors have read and agreed to the submitted version of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Mohammad Sheibani or Ahmad Reza Dehpour.

Ethics declarations

Ethics approval

The protocol of this study was approved by the Ethics Committee of Tehran University of Medical Sciences.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 61 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilzadeh, M., Shayan, M., Jourian, S. et al. A comprehensive insight into the anti-inflammatory properties of dapsone. Naunyn-Schmiedeberg's Arch Pharmacol 395, 1509–1523 (2022). https://doi.org/10.1007/s00210-022-02297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02297-1

Keywords

Navigation