Skip to main content
Log in

Elliptic curves with abelian division fields

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let E be an elliptic curve over \(\mathbb {Q}\), and let \(n\ge 1\). The central object of study of this article is the division field \(\mathbb {Q}(E[n])\) that results by adjoining to \(\mathbb {Q}\) the coordinates of all n-torsion points on \(E(\overline{\mathbb {Q}})\). In particular, we classify all curves \(E/\mathbb {Q}\) such that \(\mathbb {Q}(E[n])\) is as small as possible, that is, when \(\mathbb {Q}(E[n])=\mathbb {Q}(\zeta _n)\), and we prove that this is only possible for \(n=2,3,4\), or 5. More generally, we classify all curves such that \(\mathbb {Q}(E[n])\) is contained in a cyclotomic extension of \(\mathbb {Q}\) or, equivalently (by the Kronecker–Weber theorem), when \(\mathbb {Q}(E[n])/\mathbb {Q}\) is an abelian extension. In particular, we prove that this only happens for \(n=2,3,4,5,6\), or 8, and we classify the possible Galois groups that occur for each value of n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilu, Y., Parent, P.: Serre’s uniformity problem in the split Cartan case. Ann. Math. 173(1), 569–584 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birch, B.J., Kuyk, W. (eds.): Modular functions of one variable IV. In: Lecture Notes in Mathematics, vol. 476. Springer, Berlin (1975)

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cojocaru, A.C.: On the surjectivity of the Galois representations associated to non-CM elliptic curves (with an appendix by Ernst Kani). Can. Math. Bull. 48, 16–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cojocaru, A.C., Hall, C.: Uniform results for Serre’s theorem for elliptic curves. In: International Mathematics Research Notices, pp. 3065–3080 (2005)

  6. Cremona, J.E.: Elliptic curve data for conductors up to 350.000. http://homepages.warwick.ac.uk/masgaj/ftp/data/ (2015)

  7. Daniels, H.: Siegel functions, modular curves, and Serre’s uniformity problem. Alban. J. Math. 9(1), 3–29 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Dokchitser, T., Dokchitser, V.: Surjectivity of mod \(2^n\) representations of elliptic curves. Math. Z. 272(3–4), 961–964 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elkies, N.: Elliptic and modular curves over finite fields and related computational issues. In: Buell, D.A., Teitelbaum, J.T. (eds.) Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin, pp. 21–76. AMS/International Press, Providence, RI (1998)

  10. Elkies, N. : Explicit modular towers. In: Basar, T., Vardy, A. (eds.) Proceedings of the Thirty-Fifth Annual Allerton Conference on Communication, Control and Computing, 1997, pp. 23–32. University of Illinois at Urbana-Champaign (math.NT/0103107 on the arXiv) (1998)

  11. Fricke, R., Klein, F.: Vorlesungen ber die Theorie der elliptischen Modulfunctionen (Volumes 1 and 2), p. 1892. B. G. Teubner, Leipzig (1890)

  12. Fricke, R.: Die elliptischen Funktionen und ihre Anwendungen. Leipzig-Berlin, Teubner (1922)

    MATH  Google Scholar 

  13. Fujita, Y.: Torsion subgroups of elliptic curves in elementary abelian 2-extensions of \(\mathbb{Q}\). J. Number Theory 114, 124–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishii, N.: Rational expression for J-invariant function in terms of generators of modular function fields. In: International Mathematical Forum, vol. 2 , no. 38, pp. 1877–1894 (2007)

  15. Kamienny, S.: Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109, 129–133 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kenku, M.A.: On the number of \(\mathbb{Q}\)-isomorphism classes of elliptic curves in each \(\mathbb{Q}\)-isogeny class. J. Number Theory 15, 199–202 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kenku, M.A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109, 125–149 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Klein, F.: Lectures on the icosahedron and the solution of equations of the fifth degree. Trubner and Co., London (1888)

    Google Scholar 

  19. Knapp, A.W.: Elliptic Curves Mathematical Notes, vol. 40. Princeton University Press, Princeton (1992)

    Google Scholar 

  20. Kraus, A.: Une remarque sur les points de torsion des courbes elliptiques. C. R. Acad. Sci. Paris Ser. I Math. 321, 1143–1146 (1995)

    MathSciNet  Google Scholar 

  21. Laska, M., Lorenz, M.: Rational points on elliptic curves over \(\mathbb{Q}\) in elementary abelian 2-extensions of \(\mathbb{Q}\). J. Reine Angew. Math. 355, 163–172 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Lozano-Robledo, Á.: On the field of definition of \(p\)-torsion points on elliptic curves over the rationals. Math. Ann. 357(1), 279–305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lozano-Robledo, Á.: Division fields of elliptic curves with minimal ramification. Preprint (to appear in Revista Matemática Iberoamericana)

  24. Maier, R.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24, 1–73 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Masser, D.W., Wüstholz, G.: Galois properties of division fields of elliptic curves. Bull. Lond. Math. Soc. 25, 247–254 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazur, B.: Rational isogenies of prime degree. Invent. Math. 44, 129–162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Merel, L.: Sur la nature non-cyclotomique des points d’ordre fini des courbes elliptiques (Appendice de E. Kowalski et P. Michel). Duke Math. J. 110(1), 81–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Merel, L., Stein, W.: The field generated by the points of small prime order on an elliptic curve. IMRN 20, 1075–1082 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on \(X_1(n)\). Math. Res. Lett. (to appear)

  30. Paladino, L.: Elliptic curves with \(\mathbb{Q}(E[3])=\mathbb{Q}(\zeta _3)\) and counterexamples to local-global divisibility by \(9\). Journal de Théorie des Nombres de Bordeaux 22, 139–160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pellarin, F.: Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques. Acta Arith. 100, 203–243 (2001)

    Article  MathSciNet  Google Scholar 

  32. Rebolledo, M.: Corps engendré par les points de 13-torsion des courbes elliptiques. Acta Arith. 109(3), 219–230 (2003)

    Article  MathSciNet  Google Scholar 

  33. Rouse, J., Zureick-Brown, D.: Elliptic curves over \(\mathbb{Q}\) and \(2\)-adic images of Galois. Res. Number Theory 1, 12 (2015). (Data files and subgroup descriptions available at: http://users.wfu.edu/rouseja/2adic/)

  34. Rubin, K., Silverberg, A.: Families of elliptic curves with constant mod \(p\) representations. In: Elliptic Curves, Modular Forms, and Fermat’s Last Theorem (Hong Kong, 1993), Ser. Number Theory, I. Int. Press, Cambridge, MA, pp. 148–161 (1995)

  35. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  36. Shanks, D.: The Simplest Cubic Fields, Mathematics of Computation, vol. 28, no. 128, pp. 1137–1152 (Oct. 1974)

  37. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  38. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris, Sér. A. 273, 238–241 (1971)

  39. Zywina, D.: On the possible images of the mod \(\ell \) representations associated to elliptic curves over \(\mathbb{Q}\). (arXiv:1508.07660)

Download references

Acknowledgments

This project began after a conversation with J. M. Tornero about torsion points over cyclotomic fields, so we would like to thank him for the initial questions that inspired this work. We would also like to thank David Zywina for providing us with several models of modular curves. The second author would like to thank the Universidad Autónoma de Madrid, where much of this work was completed during a sabbatical visit, for its hospitality. The authors would also like to thank the editors and the referee for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Lozano-Robledo.

Additional information

The first author was partially supported by the Grant MTM2012–35849.

Appendix: Tables

Appendix: Tables

In this section we include four tables that summarize our findings and provide concrete examples of elliptic curves (or families of elliptic curves) with each possible isomorphism type of abelian division field, and torsion structure over \(\mathbb {Q}\) (Tables 1, 2, 3, 4).

Table 1 CM curves
Table 2 \(n=3,5\), or 6
Table 3 \(n=2\) or 4
Table 4 \(n=8\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González–Jiménez, E., Lozano-Robledo, Á. Elliptic curves with abelian division fields. Math. Z. 283, 835–859 (2016). https://doi.org/10.1007/s00209-016-1623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1623-z

Keywords

Mathematics Subject Classification

Navigation