Skip to main content
Log in

Spatial Double Choreographies of the Newtonian 2n-Body Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, for the spatial Newtonian 2n-body problem with equal masses, by proving that the minimizers of the action functional under certain symmetric, topological and monotone constraints are collision-free, we found a family of spatial double choreographies, which have the common feature that half of the masses are circling around the z-axis clockwise along a spatial loop, while the motions of the other half of the masses are given by a rotation of the first half around the x-axis by π. Both loops are simple, without any self-intersection, and symmetric with respect to the xz-plane and yz-plane. The set of intersection points between the two loops is non-empty and contained in the xy-plane. The number of such double choreographies grows exponentially as n goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barutello, V.; Ferrario, D.L.; Terracini, S.: Symmetry groups of the planar three-body problem and action-minimizing trajectories. Arch. Ration. Mech. Anal. 190(2), 189–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barutello, V.; Terracini, S.: Action minimizing orbits in the \(n\)-body problem with simple choreography constraint. Nonlinearity 17(6), 2015–2039 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, K.-C.: Removing collision singularities from action minimizers for the \(N\)-body problem with free boundaries. Arch. Ration. Mech. Anal. 181(2), 311–331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, K.-C.: Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. Ann. Math. (2), 167(2), 325–348, 2008

  5. Chen, K.-C.: Keplerian action functional, convex optimization, and an application to the four-body problem. 2013

  6. Chen, K.-C.: A minimizing property of hyperbolic Keplerian orbits. J. Fixed Point Theory Appl. 19(1), 281–287 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, K.-C.; Lin, Y.-C.: On action-minimizing retrograde and prograde orbits of the three-body problem. Commun. Math. Phys. 291(2), 403–441 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chenciner, A.: Action minimizing solutions of the Newtonian \(n\)-body problem: from homology to symmetry. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002). Higher Ed. Press, Beijing, 279–294, 2002

  9. Chenciner, A.: Are there perverse choreographies? In Delgado, J., Lacomba, E.A., Llibre, J., Pérez-Chavela, E. (eds.) New Advances in Celestial Mechanics and Hamiltonian Systems. Kluwer/Plenum, New York, 63–76, 2004

  10. Chenciner, A.: Symmetries and “simple” solutions of the classical \(n\)-body problem. In: XIVth International Congress on Mathematical Physics. World Sci. Publ., Hackensack, NJ, 4–20, 2005

  11. Chenciner, A.; Féjoz, J.: Unchained polygons and the \(N\)-body problem. Regul. Chaotic Dyn. 14(1), 64–115 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chenciner, A.; Féjoz, J.; Montgomery, R.: Rotating eights. I. The three \(\Gamma _i\) families. Nonlinearity 18(3), 1407–1424 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chenciner, A., Gerver, J., Montgomery, R., Simó, C.: Simple choreographic motions of \(N\) bodies: a preliminary study. In: Geometry, mechanics, and dynamics. Springer, New York, 287–308, 2002

  14. Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. (2), 152(3), 881–901, 2000

  15. Chenciner, A., Venturelli, A.: Minima de l’intégrale d’action du problème newtonien de 4 corps de masses égales dans \({\bf R}^3\): orbites “hip-hop”. Celest. Mech. Dynam. Astron., 77(2), 139–152 (2001), 2000

  16. Ferrario, D.L.: Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space. Arch. Ration. Mech. Anal. 179(3), 389–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferrario, D.L.; Terracini, S.: On the existence of collisionless equivariant minimizers for the classical \(n\)-body problem. Invent. Math. 155(2), 305–362 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fusco, G.; Gronchi, G.F.; Negrini, P.: Platonic polyhedra, topological constraints and periodic solutions of the classical \(N\)-body problem. Invent. Math. 185(2), 283–332 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gordon, W.B.: A minimizing property of Keplerian orbits. Am. J. Math. 99(5), 961–971 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marchal, C.: How the method of minimization of action avoids singularities. Celestial Mech. Dynam. Astronom., 83(1-4), 325–353, 2002. Modern celestial mechanics: from theory to applications (Rome, 2001)

  21. Montgomery, R.: The \(N\)-body problem, the braid group, and action-minimizing periodic solutions. Nonlinearity 11(2), 363–376 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Montgomery, R.: Action spectrum and collisions in the planar three-body problem. In: Celestial mechanics (Evanston, IL, 1999), volume 292 of Contemp. Math. American Mathematical Society, Providence, RI, 173–184, 2002

  23. Ouyang, T.; Xie, Z.: Star pentagon and many stable choreographic solutions of the Newtonian 4-body problem. Phys. D 307, 61–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69(1), 19–30 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shibayama, M.: Multiple symmetric periodic solutions to the \(2n\)-body problem with equal masses. Nonlinearity 19(10), 2441–2453 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Shibayama, M.: Variational proof of the existence of the super-eight orbit in the four-body problem. Arch. Ration. Mech. Anal. 214(1), 77–98 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simó, C.: New families of solutions in \(N\)-body problems. In European Congress of Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr. Math. Birkhäuser, Basel, 101–115, 2001

  28. Terracini, S.; Venturelli, A.: Symmetric trajectories for the \(2N\)-body problem with equal masses. Arch. Ration. Mech. Anal. 184(3), 465–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Venturelli, A.: Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 641–644 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wang, Z.; Zhang, S.: New Periodic Solutions for Newtonian n-Body Problems with Dihedral Group Symmetry and Topological Constraints. Arch. Ration. Mech. Anal. 219(3), 1185–1206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, G.: Periodic Solutions of the Planar N-Center Problem with topological constraints. Discrete Contin. Dyn. Syst. 36(9), 5131–5162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, G.: Shape space figure-8 solution of three body problem with two equal masses. Nonlinearity 30(6), 2279–2307 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Yu, G.: Simple choreographies of the planar Newtonian \(N\)-body problem. Arch. Ration. Mech. Anal. 225(2), 901–935 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Yu.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G. Spatial Double Choreographies of the Newtonian 2n-Body Problem. Arch Rational Mech Anal 229, 187–229 (2018). https://doi.org/10.1007/s00205-018-1216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1216-6

Navigation