Skip to main content
Log in

Suppression of Chemotactic Explosion by Mixing

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Chemotaxis plays a crucial role in a variety of processes in biology and ecology. In many instances, processes involving chemical attraction take place in fluids. One of the most studied PDE models of chemotaxis is given by the Keller–Segel equation, which describes a population density of bacteria or mold which is attracted chemically to substance they secrete. Solutions of the Keller–Segel equation can exhibit dramatic collapsing behavior, where density concentrates positive mass in a measure zero region. A natural question is whether the presence of fluid flow can affect singularity formation by mixing the bacteria thus making concentration harder to achieve. In this paper, we consider the parabolic-elliptic Keller–Segel equation in two and three dimensions with an additional advection term modeling ambient fluid flow. We prove that for any initial data, there exist incompressible fluid flows such that the solution to the equation stays globally regular. On the other hand, it is well known that when the fluid flow is absent, there exists initial data leading to finite time blow up. Thus the presence of fluid flow can prevent the singularity formation. We discuss two classes of flows that have the explosion arresting property. Both classes are known as very efficient mixers. The first class are the relaxation enhancing (RE) flows of (Ann Math:643–674, 2008). These flows are stationary. The second class of flows are the Yao–Zlatos near-optimal mixing flows (Mixing and un-mixing by incompressible flows. arXiv:1407.4163, 2014), which are time dependent. The proof is based on the nonlinear version of the relaxation enhancement construction of (Ann Math:643–674, 2008), and on some variations of the global regularity estimate for the Keller–Segel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Crippa G., Mazzucato A. L.: Exponential self-similar mixing and loss of regularity for continuity equations. Comp. Rendus Math. 352(11), 901–906 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki H., Kiselev A., Novikov A., Ryzhik L.: The explosion problem in a flow. J. d’Anal. Math. 110(1), 31–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coll, J., Bowden, B., Meehan, G., Konig, G., Carroll, A., Tapiolas, D., Alino, P., Heaton, A., De Nys, R., Leone, P., et al.: Chemical aspects of mass spawning in corals. i. sperm-attractant molecules in the eggs of the scleractinian coral montipora digitata. Mar. Biol. 118(2), 177–182 1994

  4. Constantin P.: Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations. Commun. Math. Phys. 104, 311–326 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math., 643–674 2008

  6. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic theory, vol. 245. Springer Science & Business Media, New York 2012

  7. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators: with application to quantum mechanics and global geometry. Springer, New York 2009

  8. Deshmane S.L., Kremlev S., Amini S., Sawaya B.E.: Monocyte chemoattractant protein-1 (mcp-1): an overview. J. Interferon Cytokine Res. 29(6), 313–326 (2009)

    Article  Google Scholar 

  9. DiFrancesco M., Lorz A., Markowich P.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discret. Contin. Dyn. Syst. 28(4), 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan R., Lorz A., Markowich P.: Global solutions to the coupled chemotaxis-fluid equations. Communi. Partial Differ. Equations 35(9), 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horstmann D.: From 1970 until present: the keller-segel model in chemotaxis and its consequences i. Jahresberichte der DMV 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Horstmann D.: From 1970 until present: the keller-segel model in chemotaxis and its consequences ii. Jahresberichte der DMV 106, 51–69 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Hou T.Y., Lei Z.: On the stabilizing effect of convection in three-dimensional incompressible flows. Commun. Pure Appl. Math. 62(4), 501–564 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hou T.Y., Lei Z., Luo G., Wang S., Zou C.: On finite time singularity and global regularity of an axisymmetric model for the three dimensional euler equations. Arch. Ration. Mech. Anal. 212(2), 683–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou T.Y., Li C., Shi Z., Wang S., Yu X.: On singularity formation of a nonlinear nonlocal system. Arch. Ration. Mech. Anal. 199(1), 117–144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hou T.Y., Shi Z., Wang S.: On singularity formation of a three dimensional model for incompressible navier–stokes equations. Adv. Math. 230(2), 607–641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iyer G., Kiselev A., Xu X.: Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows. Nonlinearity 27(5), 973 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329(2), 819–824 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MATH  Google Scholar 

  20. Keller E.F., Segel L.A.: Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971)

    Article  MATH  Google Scholar 

  21. Kiselev A., Ryzhik L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. PDE 37, 298–318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kiselev A., Ryzhik L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53(11), 115609 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kolmogorov, A., On dynamical systems with an integral invariant on the torus (russian). In: Dokl. Akad. Nauk SSSR, vol. 93, pp. 763–766 1953

  24. Larios, A., Titi, E.S.: Global regularity vs. finite-time singularities: some paradigms on the effect of boundary conditions and certain perturbations. In: Robinson, J.C., Rodigo, J.L., Sadowski, W., Vidal-López, A. (eds.) “Topics in the Theory of the Navier-Stokes Equations”. London Mathematical Society. Cambridge University Press, Cambridge 2015. arXiv:1401.1534

  25. Lin Z., Thiffeault J.-L., Doering C. R.: Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465–476 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liu J.-G., Lorz A., A coupled chemotaxis-fluid model: global existence. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 28, pp. 643–652. Elsevier 2011

  27. Lorz A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20(06), 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lorz, A.: Coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay. Commun. Math. Sci. 10(2), 2012 2012

  29. Lunasin E., Lin Z., Novikov A., Mazzucato A., Doering C. R.: Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows. J. Math. Phys. 53(11), 115611 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids, vol. 96. Springer Science & Business Media, New York 2012

  31. Maz’ya, V.: Sobolev spaces. Springer, New York 2013

  32. Miller R.L.: Demonstration of sperm chemotaxis in echinodermata: Asteroidea, holothuroidea, ophiuroidea. J. Exp. Zool. 234(3), 383–414 (1985)

    Article  ADS  Google Scholar 

  33. Nagai T.: Blowup ofnonradial solutions to parabolic-elliptic systems modeling chemotaxis intwo-dimensional domains. J. Inequal. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15(3), 311–338 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  35. Perthame, B.: Transport equations in biology. Springer Science & Business Media, New York 2006

  36. Seis C.: Maximal mixing by incompressible fluid flows. Nonlinearity 26(12), 3279 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Taub D., Proost P., Murphy W., Anver M., Longo D., Van Damme J., Oppenheim J.: Monocyte chemotactic protein-1 (mcp-1),-2, and-3 are chemotactic for human t lymphocytes. J. Clin. Investig. 95(3), 1370 (1995)

    Article  Google Scholar 

  38. von Neumann J.: Zur operatorenmethode in der klassischen mechanik. Ann. Math. 33, 587–642 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yao, Y., Zlatos, A.: Mixing and un-mixing by incompressible flows 2014. arXiv:1407.4163 (arXiv preprint)

  40. Ziemer W.P.: Weakly differentiable functions. Spriger, New York (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Xu.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, A., Xu, X. Suppression of Chemotactic Explosion by Mixing. Arch Rational Mech Anal 222, 1077–1112 (2016). https://doi.org/10.1007/s00205-016-1017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1017-8

Navigation