Skip to main content

Advertisement

Log in

Repetitive antidotal treatment is crucial in eliminating eye pathology, respiratory toxicity and death following whole-body VX vapor exposure in freely moving rats

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Exposure to the chemical warfare nerve agent VX is extremely toxic, causing severe cholinergic symptoms. If not appropriately treated, death ultimately ensues. Based on our previously described whole-body vapor exposure system, we characterized in detail the clinical outcome, including respiratory dynamics, typical of whole-body exposure to lethal doses of VX vapor in freely moving rats. We further evaluated the efficacy of two different antidotal regimens, one comprising a single and the other repeated administration of antidotes, in countering the toxic effects of the exposure. We show that a 15 min exposure to air VX concentrations of 2.34–2.42 mg/m3 induced a late (15–30 min) onset of obvious cholinergic signs, which exacerbated over time, albeit without convulsions. Marked eye pathology was observed, characterized by pupil constriction to pinpoint, excessive lacrimation with red tears (chromodacryorrhea) and corneal damage. Respiratory distress was also evident, characterized by a three–fourfold increase in Penh values, an estimate of lung resistance, and by lung and diaphragm histological damage. A single administration of TAB (the oxime TMB-4, atropine and the anticholinergic and antiglutamatergic benactyzine) at the onset of clinical signs afforded only limited protection (66% survival), with clinical deterioration including weight loss, chromodacryorrhea, corneal damage, increased airway resistance and late death. In contrast, a combined therapy of TAB at the onset of clinical signs and repeated administration of atropine and toxogonin (ATOX) every 3–5 h, a maximum of five i.m. injections, led to 100% survival and a prompt recovery, accompanied by neither the above-described signs of eye pathology, nor by bronchoconstriction and respiratory distress. The necessity of recurrent treatments for successful elimination of VX vapor toxicity strongly supports continuous penetration of VX following termination of VX vapor exposure, most likely from a VX reservoir formed in the skin due to the exposure. This, combined with the above-described eye and respiratory pathology and absence of convulsions, are unique features of whole-body VX vapor exposure as compared to whole-body vapor exposure to other nerve agents, and should accordingly be considered when devising optimal countermeasures and medical protocols for treatment of VX vapor exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

LCt:

Lethal concentration

OP:

Organophosphorus

OPNA:

Organophosphorus nerve agents

TAB:

TMB4, atropine and benactyzine

ATOX:

Atropine and toxogonin

WBP:

Whole-body plethysmography

References

  • Alioth-Streichenberg CM, Bodmer DM, Waser PG (1991) Pharmacokinetics and pharmacodynamics of obidoxime in sarin-poisoned rats. Toxicol Appl Pharmacol 108:509–519

    Article  CAS  PubMed  Google Scholar 

  • Allon N, Rabinovitz I, Manistersky E, Weissman BA, Grauer E (2005) Acute and long-lasting cardiac changes following a single whole-body exposure to sarin vapor in rats. Toxicl Sci 87:385–390

    Article  CAS  Google Scholar 

  • Allon N, Chapman S, Egoz I, Rabinovitz I, Kapon J, Weissman BA, Yacov G, Bloch-Shilderman E, Grauer E (2011) Deterioration in brain and heart functions following a single sub-lethal (0.8 LCt50) inhalation exposure of rats to sarin vapor: a putative mechanism of the long term toxicity. Toxicol Appl Pharmacol 253:31–37

    Article  CAS  PubMed  Google Scholar 

  • Barth RC, George PD, ‎Hill RH (2002) Basic toxicology. In: Barth RC, George PD, ‎Hill RH (eds) Environmental health and safety for hazardous waste sites, AIHA Press, Virginia, p 40

    Chapter  Google Scholar 

  • Bates JIC, Brusasco V, Drazen J, Fredberg J, Loring S, Eidelman D, Ludwig M, Macklem P, Martin J, Milic-Emili J, Hantos Z, Hyatt R, Lai-Fook S, Leff A, Solway J, Lutchen K, Suki B, Mitzner W, Paré P, Pride N, Sly P (2004) The use and misuse of Penh in animal models of lung disease. Am J Respir Cell Mol Biol 31:373–374

    Article  CAS  PubMed  Google Scholar 

  • Benton BJ, McGuire JM, Sommerville DR, Dabisch PA, Jakubowski EM, Matson KL, Mioduszewski RJ, Thomson SA (2006) Effects of whole-body VX vapor exposure on lethality in rats. Inhal Toxicol 18:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Bernard V, Brana C, Liste I, Lockridge O, Bloch B (2003) Dramatic depletion of cell surface M2 muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice. Mol Cell Neurosci 23:121–133

    Article  CAS  PubMed  Google Scholar 

  • Bide RW, Risk DJ (2000) Inhalation toxicity of aerosolized nerve agents. 1. VX revisited. Defense research establishment suffield. Technical Report DRES TR 2000-063, September (unclassified report). Defense Technical Information Center, DTIC users only

  • Bloch-Shilderman E, Rabinovitz I, Egoz I, Yacov G, Allon N, Nili U (2018) Determining a threshold sub-acute dose leading to minimal physiological alterations following prolonged exposure to the nerve agent VX in rats. Arch Toxicol 92:873–892

    Article  CAS  PubMed  Google Scholar 

  • Bristow LJ, Young L (1994) Chromodacryorrhea and repetitive hind paw tapping: models of peripheral and central tachykinin NK 1 receptor activation in gerbils. Euro J Pharmacol 253:245–252

    Article  CAS  Google Scholar 

  • Chung JH, Paek SM, Choi JJ, Park YK, Lee JS, Kim WK (1999) Effect of topically applied 0.1% dexamethasone on endothelial healing and aqueous composition during the repair process of rabbit corneal alkali wound. Curr Eye Res 18:110–116

    Article  CAS  PubMed  Google Scholar 

  • Clement JG (1994) Chromodacryorrhea in rats: absence following soman poisoning. Toxicol Apll Pharmacol 124:52–58

    Article  CAS  Google Scholar 

  • Collins JL, Peng X, Lee R, Witriol A, Pierre Z, Sciuto AM (2013) Determination of LCt(50)s in anesthetized rats exposed to aerosolized nerve agents. Toxicol Mech Methods 23:127–133

    Article  CAS  PubMed  Google Scholar 

  • Cui ZJ, Zhou YD, Satoh Y, Habara Y (2003) A physiological role for protoporphyrin IX photodynamic action in the rat Harderian gland? Acta Physiol Scand 179:149–154

    Article  CAS  PubMed  Google Scholar 

  • De Candole CA, Douglas WW, Evans CL (1953) The failure of respiration in death by anticholinesterase poisoning. Br J Pharmacol Chemother 8:466–475

    Article  PubMed Central  Google Scholar 

  • Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (2006) Calcium in cell injury and death. Annu Rev Pathol Mech Dis 1:405–434

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fukamauchi F, Saunders PA, Hough C, Chuang DM (1993) Agonist-induced down-regulation and agonist-induced up-regulation of M2- and M3-muscarinic acetylcholine receptor mRNA and protein in cultured cerebellar granule cells. Mol Pharmacol 44:940–949

    CAS  PubMed  Google Scholar 

  • Genovese RF, Benton BJ, Lee EH, Shippee SJ, Jakubowski EM (2007) Behavioral and biochemical evaluation of sub-lethal inhalation exposure to VX in rats. Toxicology 232:109–118

    Article  CAS  PubMed  Google Scholar 

  • Gesase AP, Satoh Y, Ono K (1996) Secretagogue-induced apocrine secretion in the Harderian gland of the rat. Cell Tissue Res 285:501–507

    Article  CAS  PubMed  Google Scholar 

  • Grant RL, Acosta D Jr. (1994) A digitized fluorescence imaging study on the effects of local anesthetics on cytosolic calcium and mitochondrial membrane potential in cultured rabbit corneal epithelial cells. Toxicol Appl Pharmacol 129:23–35

    Article  CAS  PubMed  Google Scholar 

  • Grob D, Harvey AM (1953) The effects and treatment of nerve gas poisoning. Am J Med 14:52–63

    Article  CAS  PubMed  Google Scholar 

  • Gura S, Tzanani N, Herschkovitz M, Barak R, Dagan S (2006) Fate of chemical warfare agent VX in asphalt: a novel approach for quantitation of VX in organic surfaces. Arch Environ Contam Toxicol 51:1–10

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (2011) Regulation of respiratory and respiratory insufficiency—pathophysiology, diagnosis, oxygen therapy. In: Guyton AC, Hall JE (eds) Textbook of medical physiology, 11th edn. Elsevir Saunders, The University of California, California, pp 505–524

    Google Scholar 

  • Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW (1997) Non-invasive measurement of airway responsiveness in allergen mice using barometric plethysmography. Am J Respir Crit Care Med 156:766–777

    Article  CAS  PubMed  Google Scholar 

  • Hartmann HM (2002) Evaluation of risk assessment guideline levels for the chemical warfare agents mustard, GB, and VX. Reg Toxicol Pharmacol 35:347–356

    Article  CAS  Google Scholar 

  • Hoffman BB, Taylor P (2001) Neurotransmission: the autonomic and somatic motor nervous systems. In: Hardman JG, Limbird LE, Gilman AG, (eds) Goodman and Gillman`s the pharmacological basis of therapeutics, 10th edn. TheMcGraw-Hill Companies, Inc., New York, pp 115–153

    Google Scholar 

  • Huhtala A, Huikuri KT, Palkama A, Tervo T (1977) Innervations of the rat Harderian gland by adrenergic and cholinergic nerve fibres. Anat Rec 188:263–271

    Article  CAS  PubMed  Google Scholar 

  • Jiricka Z, Volicer L (1965) Presence of blood in tears during mecholyl test. Med Pharmacol Exp Int J Exp Med 12:56–60

    CAS  PubMed  Google Scholar 

  • Johnson CD, Russell RL (1975) A rapid simple radiometric assay for cholinesterase suitable for multiple determinations. Anal Biochem 64:229–238

    Article  CAS  PubMed  Google Scholar 

  • Joosen MJA, van der Schans MJ, van Helden HPM (2010) Percutaneous exposure to the nerve agent VX: efficacy of combined atropine, obidoxime and diazepam treatment. Chem Biol Interact 188:255–263

    Article  CAS  PubMed  Google Scholar 

  • Joosen MJA, van der Schans MJ, Kuijpers WC, van Helden HPM, Noort D (2013) Timing of decontamination and treatment in case of percutaneous VX poisoning: a mini review. Chem Biol Interact 203:149–153

    Article  CAS  PubMed  Google Scholar 

  • Joosen MJA, van den Berg RM, de Jong LM, van der Schans MJ, Noort D, Langenberg JP (2017) The impact of skin decontamination on the time window for effective treatment of percutaneous VX exposure. Chem Biol Interact 267:48–56

    Article  CAS  PubMed  Google Scholar 

  • Lainee P, Robineau P, Guittin P, Coq H, Benchetrit G (1991) Mechanisms of pulmonary edema induced by an organophosphorus compound in anesthetized dogs. Fundam Appl Toxicol 17:177–185

    Article  CAS  PubMed  Google Scholar 

  • Ljubimov A, Saghizadeh M (2015) Progress in corneal wound healing. Prog Ret Eye Res 49:17–45

    Article  CAS  Google Scholar 

  • Lomask M (2006) Further exploration of the Penh parameter. Exp Toxicol Pathol 57:13–20

    Article  PubMed  Google Scholar 

  • Mallios VJ, Lydic R, Baghdoyan HA (1995) Muscarinic receptor subtypes are differentially distributed across brain stem respiratory nuclei. Am J Physiol 268:L941–L949

    CAS  PubMed  Google Scholar 

  • Marrs TC (2007) Toxicology of organophosphate nerve agents. In: Marrs TC, Maynard RL, Sidell F (eds) Chemical warfare agents: toxicology and treatment, 2nd edn. Wiley, Chichester, pp 191–221

    Chapter  Google Scholar 

  • Martin JR, Driscoll P, Gentsch C (1984) Differential response to cholinergic stimulation in psychogenetically selected rat lines. Psychopharmacology 83:262–267

    Article  CAS  PubMed  Google Scholar 

  • May LT, Lin Y, Sexton PM, Christopoulos A (2005) Regulation of M2 muscarinic acetylcholine receptor expression and signaling by prolonged exposure to allosteric modulators. J Pharmacol Exp Ther 312:382–390

    Article  CAS  PubMed  Google Scholar 

  • McDonnell PJ, Gritz DC, McDonnell JM, Zarbin MA (1991) Fluorescence of blood-stained cornea. Cornea 10:445–449

    Article  CAS  PubMed  Google Scholar 

  • McDonough JH, Shih TM (2007) Atropine and other anticholinergic drugs. In: Marrs TC, Maynard RL, Sidell F (eds) Chemical warfare agents: toxicology and treatment, 2nd edn. Wiley, Chichester, pp 286–303

    Google Scholar 

  • Mitzner W, Tankersley C (2003) Interpreting Penh in mice. J Appl Physiol 94:828–831

    Article  PubMed  Google Scholar 

  • Munro NB, Ambrose KR, Watson AP (1994) Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: implications for public protection. Environ Health Perspect 102:18–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) The sources, fate, and toxicity of chemical warfare agent degradation products. Environ Health Perspect 107:933–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai N, Ogata F, Kawasaki N, Ito Y, Funakami Y, Okamoto N, Shimomura Y (2015) Hypercalcemia leads to delayed corneal wound healing in ovariectomized rats. Biol Pharm Bull 38:1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Nambiar MP, Gordon RK, Rezk PE, Katos AM, Wajda NA, Moran TS, Steele KE, Doctor BP, Sciuto AM (2007) Medical countermeasure against respiratory toxicity and acute lung injury following inhalation exposure to chemical warfare nerve agent VX. Toxicol Appl Pharmacol 219:142–150

    Article  CAS  PubMed  Google Scholar 

  • Neumann NJ, Hölzle E, Lehmann P, Rosenbruch M, Klaucic A, Plewig G (1997) Photo hen’s egg test: a model for phototoxicity. Br J Dermatol 136:326–330

    Article  CAS  PubMed  Google Scholar 

  • Oswal DP, Garrett TL, Morris M, Lucot JB (2013) Low-dose sarin exposure produces long term changes in brain neurochemistry of mice. Neurochem Res 38:108–116

    Article  CAS  PubMed  Google Scholar 

  • Payne AP (1994) The harderian gland: a tercentennial review. J Anat 185:1–49

    PubMed  PubMed Central  Google Scholar 

  • Peng X, Perkins MW, Simons J, Witriol AM, Rodriguez AM, Benjamin BM, Devorak J, Sciuto AM (2014) Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats. Inhal Toxicol 26:371–379

    Article  CAS  PubMed  Google Scholar 

  • Raveh L, Brandeis R, Gilat E, Cohen G, Alkalay D, Rabinovitz I, Sonego H, Weissman BA (2003) Anticholinergic and antiglutamatergic agents protect against soman-induced brain damage and cognitive dysfunction. Toxicol Sci 75:108–116

    Article  CAS  PubMed  Google Scholar 

  • Rehorek SJ, Smith TD (2006) The primate Harderian gland: does it really exist? Ann Anat 188:319–327

    Article  PubMed  Google Scholar 

  • Reiter G, Müller S, Hill I, Weatherby K, Thiermann H, Worek F, Mikler J (2015) In vitro and in vivo toxicological studies of V nerve agents: molecular and stereoselective aspects. Toxicol Lett 232:438–448

    Article  CAS  PubMed  Google Scholar 

  • Rezk PE, Graham JR, Moran TS, Gordon RK, Sciuto AM, Doctor BP, Nambiar MP (2007) Acute toxic effects of nerve agent VX on respiratory dynamics and functions following microinstillation inhalation exposure in guinea pigs. Inhal Toxicol 19:291–302

    Article  CAS  PubMed  Google Scholar 

  • Rickett DL, Glenn JF, Beers ET (1986) Central respiratory effects versus neuromuscular actions of nerve agents. Neurotoxicology 7:225–236

    CAS  PubMed  Google Scholar 

  • Rodewald TK, Seeger T, Dutschmann M, Worek F, Morschel M (2011) Central respiratory effects on motor nerve activities after organophosphate exposure in working heart brainstem preparation of the rat. Toxicol Lett 206:94–99

    Article  CAS  Google Scholar 

  • Rolland P, Bolzinger MA, Cruz C, Josse D, Briançon S (2013) Hairy skin exposure to VX in vitro: effectiveness of delayed decontamination. Toxicol In Vitro 27:358–366

    Article  CAS  PubMed  Google Scholar 

  • Solberg Y, Belkin M (1997) The role of excitotoxicity in organophosphorous nerve agents central poisoning. Trens Pharmacol Sci 18:183–185

    Article  CAS  Google Scholar 

  • Song G, Yu Y, Poon CS (2006) Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci 26:300–310

    Article  CAS  PubMed  Google Scholar 

  • Staaf T, Ostman C (2005) Indoor air sampling of organophosphate triesters using solid phase extraction (SPE) adsorbents. J Environ Monit 7:344–348

    Article  CAS  PubMed  Google Scholar 

  • Tashiro S, Smith CC, Badger E, Kezur E (1940) Chromodacryorrhea, a new criterion for biological assay of acetylcholine. Proc Soc Exp Biol 44:658–661

    Article  CAS  Google Scholar 

  • Taylor P (2001) Anticholinesterase agents. In: Hardman JG, Limbird LE, Gilman AG, (eds) Goodman and Gillman`s the pharmacological basis of therapeutics, 10th edn. TheMcGraw-Hill Companies, Inc., New York, pp 175–191

    Google Scholar 

  • Watson AWS (1974) The relationship between tidal volume and respiratory frequency during muscular exercise. Br J Sports Med 8:87–90

    Article  PubMed Central  Google Scholar 

  • Whishaw IQ, Bergdall V, Kolb B (1999) Analysis of behavior in laboratory rodents. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin, pp 1243–1275

    Chapter  Google Scholar 

  • Wright PG (1954) An analysis of the central and peripheral components of respiratory failure produced by anticholinesterase poisoning in the rabbit. J Physiol I26:52–70

    Article  Google Scholar 

  • Wright BS, Rezk PE, Graham JR, Steele KE, Gordon RK, Sciuto AM, Nambiar MP (2006) Acute lung injury following inhalation exposure to nerve agent VX in guinea pigs. Inhal Toxicol 18:437–448

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa N, Morita H, Nakajima T (2006) Sarin experiences in Japan: acute toxicity and long term effects. J Neurol Sci 249:76–85

    Article  CAS  PubMed  Google Scholar 

  • Yoon KC, You IC, Kang IS, Im SK, Ahn JK, Park YG, Ahn KY (2007) Photodynamic therapy with verteporfin for corneal neovascularization. Am J Ophthalmol 144:390–395

    Article  CAS  PubMed  Google Scholar 

  • You IC, Im SK, Lee SH, Yoon KC (2011) Photodynamic therapy with verteporfin combined with subconjunctival injection of bevacizumab for corneal neovascularization. Cornea 30:30–33

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bloch-Shilderman.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest. The views expressed in this article are those of the authors and do not reflect the official policy of the IIBR.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch-Shilderman, E., Yacov, G., Cohen, L. et al. Repetitive antidotal treatment is crucial in eliminating eye pathology, respiratory toxicity and death following whole-body VX vapor exposure in freely moving rats. Arch Toxicol 93, 1365–1384 (2019). https://doi.org/10.1007/s00204-019-02401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02401-0

Keywords

Navigation