Skip to main content
Log in

Cytotoxic effects of the anthraquinone derivatives 1′-deoxyrhodoptilometrin and (S)-(−)-rhodoptilometrin isolated from the marine echinoderm Comanthus sp.

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

We investigated cytotoxic effects of the anthraquinone derivatives 1′-deoxyrhodoptilometrin (SE11) and (S)-(−)-rhodoptilometrin (SE16) isolated from the marine echinoderm Comanthus sp. in two tumor cell lines (C6 glioma, Hct116 colon carcinoma). Both compounds showed cytotoxic effects, with SE11 [IC50-value (MTT assay): 13.1 µM in Hct116 cells] showing a higher potency to induce apoptotic and necrotic cell death. No generation of oxidative stress was detectable (DCF assay), and also no modulation of Nrf2/ARE and NFκB signaling could be shown. Investigation of 23 protein kinases associated with cell proliferation, survival, metastasis, and angiogenesis showed that both compounds were potent inhibitors of distinct kinases, e.g., IGF1-receptor kinase, focal adhesion kinase, and EGF receptor kinase with SE11 being a more potent compound (IC50 values: 5, 18.4 and 4 µM, respectively). SE11 caused a decrease in ERK phosphorylation which may be a consequence of the inhibition of EGF receptor kinase by this compound. Since an inhibition of the EGF receptor/MAPK pathway is an important target for diverse cytostatic drugs, we suggest that the anthraquinone derivative 1′-deoxyrhodoptilometrin (SE11) may be an interesting lead structure for the development of new anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARE:

Antioxidant responsive element

DCF:

Dichlorofluorescein

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

ERK:

Extracellular-regulated protein kinase

FBS:

Fetal bovine serum

HO-1:

Heme oxigenase

LDH:

Lactate dehydrognase

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium-bromide

SEAP:

Secreted embryonic alkaline phosphatase

TNF-α:

Tumor necrosis factor α

SE11:

1′-Deoxyrhodoptilometrin

SE16:

(S)-(−)-Rhodoptilometrin

References

  • Aguiló JI, Iturralde M, Monleón I, Iñarrea P, Pardo J, Martínez-Lorenzo MJ, Anel A, Alava MA (2012) Cytotoxicity of quinone drugs on highly proliferative human leukemia T cells: reactive oxygen species generation and inactive shortened SOD1 isoform implications. Chem Biol Interact 198:18–28

    Article  PubMed  Google Scholar 

  • Aly AH, Edrada-Ebel RA, Indriani ID, Wray V, Müller WEG, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MHG, Lin WH, Proksch P, Ebel R (2008) Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J Nat Prod 71:972–980

    Article  CAS  PubMed  Google Scholar 

  • Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T (2014) Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res Fundam Mol Mech Mutagen 768:84–97

    Article  CAS  Google Scholar 

  • Chovolou Y, Ebada SS, Wätjen W, Proksch P (2011) Identification of angular naphthopyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF-κB signaling pathway. Eur J Pharmacol 657:26–34

    Article  CAS  PubMed  Google Scholar 

  • Dimova I, Popivanov G, Djonov V (2014) Angiogenesis in cancer—general pathways and their therapeutic implications. J BUON 19:15–21

    PubMed  Google Scholar 

  • Fox EJ (2004) Mechanism of action of mitoxantrone. Neurology 63(12 Suppl 6):S15–S18

    Article  CAS  PubMed  Google Scholar 

  • Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Gandara DR (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1639–1648

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Chung HY, Yokozawa T, Kim YC, Hyun SK, Choi JS (2004) Alaternin and emodin with hydroxyl radical inhibitory and/or scavenging activities and hepatoprotective activity on tacrine-induced cytotoxicity in HepG2 cells. Arch Pharm Res 27:947–953

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Kim YH (1995) New cytotoxic anthraquinones from the crinoid Ptilometra: 1′-deoxyrhodoptilometrin-6-O-sulfate and rhodoptilometrin-6-O-sulfate. Bull Korean Chem Soc 16:1011–1013

    CAS  Google Scholar 

  • Lu JJ, Bao JL, Wu GS, Xu WS, Huang MQ, Chen XP, Wang YT (2013) Quinones derived from plant secondary metabolites as anti-cancer agents. Anticancer Agents Med Chem 13:456–463

    CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2010) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  Google Scholar 

  • Nguyen LK, Kolch W, Kholodenko BN (2013) When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signaling. Cell Commun Signal 11:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit K, Biard JF (2013) Marine natural products and related compounds as anticancer agents: an overview of their clinical status. Anticancer Agents Med Chem 13:603–631

    Article  CAS  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FA, Noguti J, Oshima CT, Ribeiro DA (2014) Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res 34:1547–1552

    CAS  PubMed  Google Scholar 

  • Sawadogo WR, Schumacher M, Teiten MH, Cerella C, Dicato M, Diederich M (2013) A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 18:3641–3673

    Article  CAS  PubMed  Google Scholar 

  • Sebens S, Arlt A, Schäfer H (2008) NF-kappaB as a molecular target in the therapy of pancreatic carcinoma. Recent Results Cancer Res 177:151–164

    Article  CAS  PubMed  Google Scholar 

  • Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, Sethi G (2013) Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 341:139–149

    Article  CAS  PubMed  Google Scholar 

  • Su BN, Park EJ, Mbwambo ZH, Santarsiero BD, Mesecar AD, Fong HHS, Pezzuto JM, Kinghorn AD (2002) New chemical constituents of Euphorbia quinquecostata and absolute configuration assignment by a convenient Mosher ester procedure carried out in NMR tubes. J Nat Prod 65:1278–1282

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM (2012) Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 10:963–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma RP (2006) Anti-cancer activities of 1,4-naphthoquinones: a QSAR study. Anticancer Agents Med Chem 6:489–499

    Article  CAS  PubMed  Google Scholar 

  • Wasserman WW, Fahl WE (1997) Functional antioxidant responsive elements. Proc Natl Acad Sci 94:5361–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei WT, Lin SZ, Liu DL, Wang ZH (2013) The distinct mechanisms of the antitumor activity of emodin in different types of cancer. Oncol Rep 30:2555–2562

    CAS  PubMed  Google Scholar 

  • Wright AD, Nielson JL, Tapiolas DM, Motti CA, Ovenden SPB, Kearns PS, Liptrot CH (2009) Detailed NMR, including 1,1-ADEQUATE, and anticancer studies of compounds from the echinoderm Colobometra perspinosa. Mar Dugs 7:565–575

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. R. A. Edrada-Ebel (University of Strathclyde, Glasgow, UK) for supplying the echinoderm specimen and HRESI mass spectrometry. We would like to thank Dr. N. J. de Voogd (National Museum of Natural History, Leiden, Netherlands) for taxonomical classification. We are also indebted to Dr. V. Wray (Helmholtz Center for Infection Research, Braunschweig, Germany) for providing the necessary NMR spectral analysis. We thank the Egyptian Government for the predoctoral scholarship (S.E.).

Author contributions

W.W. and P.P. conceived and designed the experiments; S.E., A.B., Y.C., F.T., H.K., and W.L. performed the experiments, S.E., A.B., Y.C., F.T., H.K., and W.L. analyzed the data; W.W. and P.P. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Wätjen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wätjen, W., Ebada, S.S., Bergermann, A. et al. Cytotoxic effects of the anthraquinone derivatives 1′-deoxyrhodoptilometrin and (S)-(−)-rhodoptilometrin isolated from the marine echinoderm Comanthus sp.. Arch Toxicol 91, 1485–1495 (2017). https://doi.org/10.1007/s00204-016-1787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1787-7

Keywords

Navigation