Skip to main content

Advertisement

Log in

Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Resveratrol, a natural compound endowed with multiple health-promoting effects, has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdin AA (2013) Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-specific delivery formula of resveratrol in treatment of experimental ulcerative colitis in rats. Eur J Pharmacol 718(1–3):145–153

    CAS  PubMed  Google Scholar 

  • Airola MV, Hannun YA (2013) Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 215:57–76

  • Alvarez SE, Harikumar KB, Hait NC et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301):1084–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB (2002) Piceatannol inhibits TNF-induced NF-kappaB activation and NF-kappaB-mediated gene expression through suppression of IkappaBalpha kinase and p65 phosphorylation. J Immunol 169(11):6490–6497

    CAS  PubMed  Google Scholar 

  • Athar M, Back JH, Tang X et al (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224(3):274–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baechler SA, Schroeter A, Dicker M, Steinberg P, Marko D (2014) Topoisomerase II-targeting properties of a grapevine-shoot extract and resveratrol oligomers. J Agric Food Chem 62(3):780–788

    CAS  PubMed  Google Scholar 

  • Baek DJ, MacRitchie N, Anthony NG et al (2013) Structure–activity relationships and molecular modeling of sphingosine kinase inhibitors. J Med Chem 56(22):9310–9327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baek SH, Chung HJ, Lee HK et al (2014) Treatment of obesity with the resveratrol-enriched rice DJ-526. Sci Rep 4:3879

    PubMed Central  PubMed  Google Scholar 

  • Bagdanoff JT, Donoviel MS, Nouraldeen A et al (2010) Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J Med Chem 53(24):8650–8662

    CAS  PubMed  Google Scholar 

  • Barjot C, Tournaire M, Castagnino C, Vigor C, Vercauteren J, Rossi JF (2007) Evaluation of antitumor effects of two vine stalk oligomers of resveratrol on a panel of lymphoid and myeloid cell lines: comparison with resveratrol. Life Sci 81(23–24):1565–1574

    CAS  PubMed  Google Scholar 

  • Barthomeuf C, Lamy S, Blanchette M, Boivin D, Gingras D, Beliveau R (2006) Inhibition of sphingosine-1-phosphate- and vascular endothelial growth factor-induced endothelial cell chemotaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. Free Radic Biol Med 40(4):581–590

    CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

    CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    CAS  PubMed  Google Scholar 

  • Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R (2012) Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 11(6):443–461

    CAS  PubMed  Google Scholar 

  • Bobrowska-Hagerstrand M, Lillas M, Mrowczynska L et al (2006) Resveratrol oligomers are potent MRP1 transport inhibitors. Anticancer Res 26(3A):2081–2084

    CAS  PubMed  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195

    CAS  PubMed  Google Scholar 

  • Bourquin F, Riezman H, Capitani G, Grutter MG (2010) Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure 18(8):1054–1065

    CAS  PubMed  Google Scholar 

  • Breslow DK, Collins SR, Bodenmiller B et al (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkmann V, Billich A, Baumruker T et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897

    CAS  PubMed  Google Scholar 

  • Brizuela L, Dayon A, Doumerc N et al (2010) The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J 24(10):3882–3894

    CAS  PubMed  Google Scholar 

  • Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340

    CAS  PubMed  Google Scholar 

  • Buryanovskyy L, Fu Y, Boyd M et al (2004) Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry 43(36):11417–11426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cakir Z, Saydam G, Sahin F, Baran Y (2011) The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells. J Cancer Res Clin Oncol 137(2):279–286

    CAS  PubMed  Google Scholar 

  • Canals D, Perry DM, Jenkins RW, Hannun YA (2011) Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 163(4):694–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canto C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev 64(1):166–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capiralla H, Vingtdeux V, Zhao H et al (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120(3):461–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceccom J, Loukh N, Lauwers-Cances V et al (2014) Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer’s disease. Acta Neuropathol Commun 2(1):12

    PubMed Central  PubMed  Google Scholar 

  • Chen J, Zhou Y, Mueller-Steiner S et al (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280(48):40364–40374

    CAS  PubMed  Google Scholar 

  • Cheng Y, Wu J, Hertervig E et al (2007) Identification of aberrant forms of alkaline sphingomyelinase (NPP7) associated with human liver tumorigenesis. Br J Cancer 97(10):1441–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chi LN, Tabuchi K, Nakamagoe M, Nakayama M, Nishimura B, Hara A (2014) Ceramide/sphingomyelin cycle involvement in gentamicin-induced cochlear hair cell death. Arch Toxicol. doi:10.1007/s00204-014-1259-x

  • Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273(5272):239–242

    CAS  PubMed  Google Scholar 

  • Christoffersen C, Obinata H, Kumaraswamy SB et al (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 108(23):9613–9618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung EY, Kim BH, Lee MK et al (2003) Anti-inflammatory effect of the oligomeric stilbene alpha-Viniferin and its mode of the action through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase. Planta Med 69(8):710–714

    CAS  PubMed  Google Scholar 

  • Chung EY, Roh E, Kwak JA et al (2010) alpha-Viniferin suppresses the signal transducer and activation of transcription-1 (STAT-1)-inducible inflammatory genes in interferon-gamma-stimulated macrophages. J Pharmacol Sci 112(4):405–414

    CAS  PubMed  Google Scholar 

  • Cingolani F, Casasampere M, Sanllehi P, Casas J, Bujons J, Fabrias G (2014) Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. J Lipid Res 55(8):1711–1720

    CAS  PubMed  Google Scholar 

  • Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518

    CAS  PubMed  Google Scholar 

  • Coggon P, Janes NF, King FE et al (1965) Hopeaphenol, an extractive of the heartwood of Hopea odorata and Balanocarpus heimii. J Chem Soc 406–409

  • Coggon P, Mcphail AT, Wallwork SC (1966) The structure of hopeaphenol. Chem Commun (London) 439–440

  • Couttas TA, Kain N, Daniels B et al (2014) Loss of the neuroprotective factor sphingosine 1-phosphate early in Alzheimer’s disease pathogenesis. Acta Neuropathol Commun 2(1):9

    PubMed Central  PubMed  Google Scholar 

  • Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101(7):2070–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–803

    CAS  PubMed  Google Scholar 

  • Dai JR, Hallock YF, Cardellina JH 2nd, Boyd MR (1998) HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato. J Nat Prod 61(3):351–353

    CAS  PubMed  Google Scholar 

  • Dayanandan S, Ashton PS, Williams SM, Primack RB (1999) Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast RBCL gene. Am J Bot 86(8):1182–1190

    CAS  PubMed  Google Scholar 

  • Delmas D, Rebe C, Lacour S et al (2003) Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278(42):41482–41490

    CAS  PubMed  Google Scholar 

  • Dilshara MG, Lee KT, Kim HJ et al (2014) Anti-inflammatory mechanism of alpha-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells. Cell Immunol 290(1):21–29

    CAS  PubMed  Google Scholar 

  • Dimanche-Boitrel MT, Meurette O, Rebillard A, Lacour S (2005) Role of early plasma membrane events in chemotherapy-induced cell death. Drug Resist Updat 8(1–2):5–14

    CAS  PubMed  Google Scholar 

  • Dolfini E, Roncoroni L, Dogliotti E et al (2007) Resveratrol impairs the formation of MDA-MB-231 multicellular tumor spheroids concomitant with ceramide accumulation. Cancer Lett 249(2):143–147

    CAS  PubMed  Google Scholar 

  • Don AS, Martinez-Lamenca C, Webb WR, Proia RL, Roberts E, Rosen H (2007) Essential requirement for sphingosine kinase 2 in a sphingolipid apoptosis pathway activated by FTY720 analogues. J Biol Chem 282(21):15833–15842

    CAS  PubMed  Google Scholar 

  • Duan RD (2005) Anticancer compounds and sphingolipid metabolism in the colon. In Vivo 19(1):293–300

    CAS  PubMed  Google Scholar 

  • Duan RD (2006) Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta 1761(3):281–291

    CAS  PubMed  Google Scholar 

  • Feng X, Liang N, Zhu D et al (2013) Resveratrol inhibits beta-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS ONE 8(3):e59888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3(7):353–355

    CAS  PubMed  Google Scholar 

  • Fremont L (2000) Biological effects of resveratrol. Life Sci 66(8):663–673

    CAS  PubMed  Google Scholar 

  • French KJ, Zhuang Y, Maines LW et al (2010) Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333(1):129–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuhara S, Simmons S, Kawamura S et al (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122(4):1416–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5(8):777–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gagliostro V, Casas J, Caretti A et al (2012) Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int J Biochem Cell Biol 44(12):2135–2143

    CAS  PubMed  Google Scholar 

  • Gledhill JR, Montgomery MG, Leslie AG, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 104(34):13632–13637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Sarrias A, Gromek S, Niesen D, Seeram NP, Henry GE (2011) Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J Agric Food Chem 59(16):8632–8638

    CAS  PubMed  Google Scholar 

  • Granzotto A, Zatta P (2014) Resveratrol and Alzheimer’s disease: message in a bottle on red wine and cognition. Front Aging Neurosci 6:95

    PubMed Central  PubMed  Google Scholar 

  • Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157(1):65–75

    CAS  PubMed  Google Scholar 

  • Guebailia HA, Chira K, Richard T et al (2006) Hopeaphenol: the first resveratrol tetramer in wines from North Africa. J Agric Food Chem 54(25):9559–9564

    CAS  PubMed  Google Scholar 

  • Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB (2014) Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 559C:91–99

    Google Scholar 

  • Hagen N, Hans M, Hartmann D, Swandulla D, van Echten-Deckert G (2011) Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism. Cell Death Differ 18(8):1356–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D et al (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180(2):525–535

    CAS  PubMed  Google Scholar 

  • Hait NC, Allegood J, Maceyka M et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hait NC, Wise LE, Allegood JC et al (2014) Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci 17(7):971–980

    CAS  PubMed  Google Scholar 

  • Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243(4890):500–507

    CAS  PubMed  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    CAS  PubMed  Google Scholar 

  • Hanson MA, Roth CB, Jo E et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335(6070):851–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harikumar KB, Yester JW, Surace MJ et al (2014) K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nat Immunol 15(3):231–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hla T, Venkataraman K, Michaud J (2008) The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta 1781(9):477–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland WL, Bikman BT, Wang LP et al (2011a) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121(5):1858–1870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland WL, Miller RA, Wang ZV et al (2011b) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17(1):55–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133(3):387–391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    CAS  PubMed  Google Scholar 

  • Huang X, Withers BR, Dickson RC (2014) Sphingolipids and lifespan regulation. Biochim Biophys Acta 1841(5):657–664

    CAS  PubMed  Google Scholar 

  • Hubbard BP, Gomes AP, Dai H et al (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339(6124):1216–1219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingolfsson HI, Thakur P, Herold KF et al (2014) Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 9(8):1788–1798

    CAS  PubMed  Google Scholar 

  • Issuree PD, Pushparaj PN, Pervaiz S, Melendez AJ (2009) Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities. FASEB J 23(8):2412–2424

    CAS  PubMed  Google Scholar 

  • Ito T, Akao Y, Tanaka T, Iinuma M, Nozawa Y (2002) Vaticanol C, a novel resveratrol tetramer, inhibits cell growth through induction of apoptosis in colon cancer cell lines. Biol Pharm Bull 25(1):147–148

    CAS  PubMed  Google Scholar 

  • Ito T, Akao Y, Yi H et al (2003) Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C. Carcinogenesis 24(9):1489–1497

    CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    CAS  PubMed  Google Scholar 

  • Jiang W, Ogretmen B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841(5):783–792

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B et al (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17):17038–17045

    CAS  PubMed  Google Scholar 

  • Kalvodova L, Kahya N, Schwille P et al (2005) Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 280(44):36815–36823

    CAS  PubMed  Google Scholar 

  • Kamath-Loeb AS, Balakrishna S, Whittington D et al (2014) Sphingosine: a modulator of human translesion DNA polymerase activity. J Biol Chem 289(31):21663–21672

    PubMed  Google Scholar 

  • Karliner JS (2013) Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta 1831(1):203–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5(10):3779–3827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim RH, Takabe K, Milstien S, Spiegel S (2009) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 1791(7):692–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DH, Kim SH, Kim HJ, Jin C, Chung KC, Rhim H (2010) Stilbene derivatives as human 5-HT(6) receptor antagonists from the root of Caragana sinica. Biol Pharm Bull 33(12):2024–2028

    CAS  PubMed  Google Scholar 

  • Kucuksayan E, Konuk EK, Demir N, Mutus B, Aslan M (2014) Neutral sphingomyelinase inhibition decreases ER stress-mediated apoptosis and inducible nitric oxide synthase in retinal pigment epithelial cells. Free Radic Biol Med 72C:113–123

    Google Scholar 

  • Kueck A, Opipari AW Jr, Griffith KA et al (2007) Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol Oncol 107(3):450–457

    CAS  PubMed  Google Scholar 

  • Kulanthaivel P, Janzen WP, Ballas LM et al (1995) Naturally occurring protein kinase C inhibitors; II. Isolation of oligomeric stilbenes from Caragana sinica. Planta Med 61(1):41–44

    CAS  PubMed  Google Scholar 

  • Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12(9):688–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurano M, Hara M, Tsuneyama K et al (2014) Induction of insulin secretion by apolipoprotein M, a carrier for sphingosine 1-phosphate. Biochim Biophys Acta 1841(9):1217–1226

    CAS  PubMed  Google Scholar 

  • Kushiro T, Nambara E, McCourt P (2003) Hormone evolution: the key to signalling. Nature 422(6928):122

    CAS  PubMed  Google Scholar 

  • Langcake P, Pryce RJ (1977a) A new class of phytoalexins from grapevines. Experientia 33(2):151–152

    CAS  PubMed  Google Scholar 

  • Langcake P, Pryce RJ (1977b) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16(8):1193–1196

    CAS  Google Scholar 

  • Lavieu G, Scarlatti F, Sala G et al (2006) Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 281(13):8518–8527

    CAS  PubMed  Google Scholar 

  • Lee SH, Shin NH, Kang SH et al (1998) Alpha-viniferin: a prostaglandin H2 synthase inhibitor from root of Carex humilis. Planta Med 64(3):204–207

    CAS  PubMed  Google Scholar 

  • Leonard SS, Xia C, Jiang BH et al (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309(4):1017–1026

    CAS  PubMed  Google Scholar 

  • Li Y, Li S, Qin X et al (2014) The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5:e1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim KG, Sun C, Bittman R, Pyne NJ, Pyne S (2011a) (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 23(10):1590–1595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim KG, Tonelli F, Li Z et al (2011b) FTY720 analogues as sphingosine kinase 1 inhibitors: enzyme inhibition kinetics, allosterism, proteasomal degradation, and actin rearrangement in MCF-7 breast cancer cells. J Biol Chem 286(21):18633–18640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim KG, Gray AI, Pyne S, Pyne NJ (2012a) Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. Br J Pharmacol 166(5):1605–1616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim KG, Tonelli F, Berdyshev E et al (2012b) Inhibition kinetics and regulation of sphingosine kinase 1 expression in prostate cancer cells: functional differences between sphingosine kinase 1a and 1b. Int J Biochem Cell Biol 44(9):1457–1464

    CAS  PubMed  Google Scholar 

  • Lin HY, Delmas D, Vang O et al (2013) Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J Cell Biochem 114(8):1940–1954

    CAS  PubMed  Google Scholar 

  • Liu Z, MacRitchie N, Pyne S, Pyne NJ, Bittman R (2013) Synthesis of (S)-FTY720 vinylphosphonate analogues and evaluation of their potential as sphingosine kinase 1 inhibitors and activators. Bioorg Med Chem 21(9):2503–2510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu M, Seo J, Allegood J et al (2014) Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. J Biol Chem 289(5):2801–2814

    CAS  PubMed  Google Scholar 

  • Loveridge C, Tonelli F, Leclercq T et al (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285(50):38841–38852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maceyka M, Sankala H, Hait NC et al (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280(44):37118–37129

    CAS  PubMed  Google Scholar 

  • Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22(1):50–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164(12):6509–6519

    CAS  PubMed  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382

    CAS  PubMed  Google Scholar 

  • Mattison JA, Wang M, Bernier M et al (2014) Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab 20(1):183–190

    CAS  PubMed  Google Scholar 

  • Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res 82(2):193–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mielke MM, Lyketsos CG (2010) Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets? Neuromolecular Med 12(4):331–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mielke MM, Bandaru VV, Haughey NJ et al (2012) Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II. Neurology 79(7):633–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minutolo F, Sala G, Bagnacani A et al (2005) Synthesis of a resveratrol analogue with high ceramide-mediated proapoptotic activity on human breast cancer cells. J Med Chem 48(22):6783–6786

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Shakibaei M (2013) Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci 1290:59–66

    CAS  PubMed  Google Scholar 

  • Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13(1):51–65

    CAS  PubMed  Google Scholar 

  • Muhtadi Hakim EH, Juliawaty LD et al (2006) Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii. Fitoterapia 77(7–8):550–555

    CAS  PubMed  Google Scholar 

  • Neubauer HA, Pitson SM (2013) Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 280(21):5317–5336

    CAS  PubMed  Google Scholar 

  • Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997

    CAS  PubMed  Google Scholar 

  • Nwachukwu JC, Srinivasan S, Bruno NE et al (2014) Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. Elife 3:e02057

    PubMed Central  PubMed  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259(5102):1769–1771

    CAS  PubMed  Google Scholar 

  • Ohguchi K, Tanaka T, Ito T et al (2003) Inhibitory effects of resveratrol derivatives from Dipterocarpaceae plants on tyrosinase activity. Biosci Biotechnol Biochem 67(7):1587–1589

    CAS  PubMed  Google Scholar 

  • Ohguchi K, Akao Y, Matsumoto K et al (2005) Vaticanol C-induced cell death is associated with inhibition of pro-survival signaling in HL60 human leukemia cell line. Biosci Biotechnol Biochem 69(2):353–356

    CAS  PubMed  Google Scholar 

  • Ohyama M, Tanaka T, Ito T, Iinuma M, Bastow KF, Lee KH (1999) Antitumor agents 200. Cytotoxicity of naturally occurring resveratrol oligomers and their acetate derivatives. Bioorg Med Chem Lett 9(20):3057–3060

    CAS  PubMed  Google Scholar 

  • Oi N, Jeong CH, Nadas J et al (2010) Resveratrol, a red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene A(4)hydrolase. Cancer Res 70(23):9755–9764

    CAS  PubMed  Google Scholar 

  • Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–560

    CAS  PubMed  Google Scholar 

  • Orallo F (2008) Trans-resveratrol: a magical elixir of eternal youth? Curr Med Chem 15(19):1887–1898

    CAS  PubMed  Google Scholar 

  • Park SJ, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park K, Elias PM, Hupe M et al (2013) Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. J Invest Dermatol 133(8):1942–1949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel KR, Andreadi C, Britton RG et al (2013) Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence. Sci Transl Med 5(205):205ra133

  • Pineda-Sanabria SE, Robertson IM, Sykes BD (2011) Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 50(8):1309–1320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinho BR, Ferreres F, Valentao P, Andrade PB (2013) Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer’s disease treatment. J Pharm Pharmacol 65(12):1681–1700

    CAS  PubMed  Google Scholar 

  • Poti F, Simoni M, Nofer JR (2014) Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). Cardiovasc Res 103(3):395–404

    CAS  PubMed  Google Scholar 

  • Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278(22):19777–19783

    CAS  PubMed  Google Scholar 

  • Puissant A, Robert G, Fenouille N et al (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 70(3):1042–1052

    CAS  PubMed  Google Scholar 

  • Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349(Pt 2):385–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10(7):489–503

    CAS  PubMed  Google Scholar 

  • Pyne S, Pyne NJ (2011) Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med 17(8):463–472

    CAS  PubMed  Google Scholar 

  • Qiao H, Chen X, Xu L et al (2013) Antitumor effects of naturally occurring oligomeric resveratrol derivatives. FASEB J 27(11):4561–4571

    CAS  PubMed  Google Scholar 

  • Qin J, Berdyshev E, Poirer C, Schwartz NB, Dawson G (2012) Neutral sphingomyelinase 2 deficiency increases hyaluronan synthesis by up-regulation of Hyaluronan synthase 2 through decreased ceramide production and activation of Akt. J Biol Chem 287(17):13620–13632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raj P, Louis XL, Thandapilly SJ, Movahed A, Zieroth S, Netticadan T (2014) Potential of resveratrol in the treatment of heart failure. Life Sci 95(2):63–71

    CAS  PubMed  Google Scholar 

  • Richard T, Pawlus AD, Iglesias ML et al (2011a) Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 1215:103–108

    CAS  PubMed  Google Scholar 

  • Richard T, Poupard P, Nassra M et al (2011b) Protective effect of epsilon-viniferin on beta-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg Med Chem 19(10):3152–3155

    CAS  PubMed  Google Scholar 

  • Roberts VH, Pound LD, Thorn SR et al (2014) Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB J 28(6):2466–2477

    CAS  PubMed  Google Scholar 

  • Russo SB, Ross JS, Cowart LA (2013) Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol 216:373–401

  • Sahebkar A (2013) Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 71(12):822–835

    PubMed  Google Scholar 

  • Sahidin Hakim EH, Juliawaty LD et al (2005) Cytotoxic properties of oligostilbenoids from the tree barks of Hopea dryobalanoides. Z Naturforsch C 60(9–10):723–727

    CAS  PubMed  Google Scholar 

  • Sala G, Minutolo F, Macchia M, Sacchi N, Ghidoni R (2003) Resveratrol structure and ceramide-associated growth inhibition in prostate cancer cells. Drugs Exp Clin Res 29(5–6):263–269

    CAS  PubMed  Google Scholar 

  • Samad F, Hester KD, Yang G, Hannun YA, Bielawski J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55(9):2579–2587

    CAS  PubMed  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A et al (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86(2):189–199

    CAS  PubMed  Google Scholar 

  • Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N, Ghidoni R (2003) Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J 17(15):2339–2341

    CAS  PubMed  Google Scholar 

  • Scarlatti F, Sala G, Ricci C et al (2007) Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 253(1):124–130

    CAS  PubMed  Google Scholar 

  • Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329

    CAS  PubMed  Google Scholar 

  • Schwalm S, Pfeilschifter J, Huwiler A (2014) Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. Basic Clin Pharmacol Toxicol 114(1):44–49

    CAS  PubMed  Google Scholar 

  • Semba RD, Ferrucci L, Bartali B et al (2014) Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med 174(7):1077–1084

    CAS  PubMed  Google Scholar 

  • Seya K, Kanemaru K, Sugimoto C et al (2009) Opposite effects of two resveratrol (trans-3,5,4’-trihydroxystilbene) tetramers, vitisin A and hopeaphenol, on apoptosis of myocytes isolated from adult rat heart. J Pharmacol Exp Ther 328(1):90–98

    CAS  PubMed  Google Scholar 

  • Shibata MA, Akao Y, Shibata E et al (2007) Vaticanol C, a novel resveratrol tetramer, reduces lymph node and lung metastases of mouse mammary carcinoma carrying p53 mutation. Cancer Chemother Pharmacol 60(5):681–691

    CAS  PubMed  Google Scholar 

  • Shin KO, Park NY, Seo CH et al (2012) Inhibition of sphingolipid metabolism enhances resveratrol chemotherapy in human gastric cancer cells. Biomol Ther (Seoul) 20(5):470–476

    CAS  Google Scholar 

  • Shukla Y, Singh R (2011) Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci 1215:1–8

    CAS  PubMed  Google Scholar 

  • Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16(8):449–466

    CAS  PubMed  Google Scholar 

  • Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R, Fabrias G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett 282(2):238–243

    CAS  PubMed  Google Scholar 

  • Sim J, Jang HW, Song M, Kim JH, Lee SH, Lee S (2014) Potent inhibitory effect of alpha-viniferin on human cytochrome P450. Food Chem Toxicol 69:276–280

    CAS  PubMed  Google Scholar 

  • Simbulan CM, Tamiya-Koizumi K, Suzuki M, Shoji M, Taki T, Yoshida S (1994) Sphingosine inhibits the synthesis of RNA primers by primase in vitro. Biochemistry 33(30):9007–9012

    CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (2014) Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 54:363–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smoliga JM, Vang O, Baur JA (2012) Challenges of translating basic research into therapeutics: resveratrol as an example. J Gerontol A Biol Sci Med Sci 67(2):158–167

    PubMed  Google Scholar 

  • Snyder SA, Gollner A, Chiriac MI (2011) Regioselective reactions for programmable resveratrol oligomer synthesis. Nature 474(7352):461–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sotheeswaran S, Pasupathy V (1993) Distribution of resveratrol oligomers in plants. Phytochemistry 32(5):1083–1092

    CAS  Google Scholar 

  • Strub GM, Paillard M, Liang J et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25(2):600–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subbaramaiah K, Chung WJ, Michaluart P et al (1998) Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 273(34):21875–21882

    CAS  PubMed  Google Scholar 

  • Sung SH, Kang SY, Lee KY et al (2002) (+)-Alpha-viniferin, a stilbene trimer from Caragana chamlague, inhibits acetylcholinesterase. Biol Pharm Bull 25(1):125–127

    CAS  PubMed  Google Scholar 

  • Szewczuk LM, Forti L, Stivala LA, Penning TM (2004) Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J Biol Chem 279(21):22727–22737

    CAS  PubMed  Google Scholar 

  • Tabata Y, Takano K, Ito T et al (2007) Vaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation. Am J Physiol Cell Physiol 293(1):C411–C418

    CAS  PubMed  Google Scholar 

  • Takabe K, Paugh SW, Milstien S, Spiegel S (2008) “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60(2):181–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takasugi N, Sasaki T, Suzuki K et al (2011) BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J Neurosci 31(18):6850–6857

    CAS  PubMed  Google Scholar 

  • Tanaka T, Ito T, Ido Y et al (2000) Stilbenoids in the stem bark of Hopea parviflora. Phytochemistry 53(8):1015–1019

    CAS  PubMed  Google Scholar 

  • Timmers S, Hesselink MK, Schrauwen P (2013) Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Ann N Y Acad Sci 1290:83–89

    CAS  PubMed  Google Scholar 

  • Tome-Carneiro J, Gonzalvez M, Larrosa M et al (2013) Resveratrol in primary and secondary prevention of cardiovascular disease: a dietary and clinical perspective. Ann N Y Acad Sci 1290:37–51

    CAS  PubMed  Google Scholar 

  • Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29(2):381–389

    CAS  PubMed  Google Scholar 

  • Tsukamoto T, Nakata R, Tamura E et al (2010) Vaticanol C, a resveratrol tetramer, activates PPARalpha and PPARbeta/delta in vitro and in vivo. Nutr Metab (Lond) 7:46

    Google Scholar 

  • Uchida Y (2014) Ceramide signaling in mammalian epidermis. Biochim Biophys Acta 1841(3):453–462

    CAS  PubMed  Google Scholar 

  • Ulrich S, Huwiler A, Loitsch S, Schmidt H, Stein JM (2007) De novo ceramide biosynthesis is associated with resveratrol-induced inhibition of ornithine decarboxylase activity. Biochem Pharmacol 74(2):281–289

    CAS  PubMed  Google Scholar 

  • Urs AN, Dammer E, Sewer MB (2006) Sphingosine regulates the transcription of CYP17 by binding to steroidogenic factor-1. Endocrinology 147(11):5249–5258

    CAS  PubMed  Google Scholar 

  • Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 9(Suppl 2):S6

    PubMed Central  PubMed  Google Scholar 

  • Waeber C, Walther T (2014) Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. Circ J 78(4):795–802

    CAS  PubMed  Google Scholar 

  • Wang Z, Min X, Xiao SH et al (2013) Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21(5):798–809

    CAS  PubMed  Google Scholar 

  • Wang J, Bi W, Cheng A et al (2014) Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease-experimental approach and therapeutic implications. Front Aging Neurosci 6:42

    PubMed Central  PubMed  Google Scholar 

  • Waters CM, Long J, Gorshkova I et al (2006) Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J 20(3):509–511

    CAS  PubMed  Google Scholar 

  • Weber J, Wahab I, Marzuki A et al (2001) Heimiol A, a new dimeric stilbenoid from Neobalanocarpus heimii. Tetrahedron Lett 42(29):4895–4897

    CAS  Google Scholar 

  • Weiler S, Braendlin N, Beerli C et al (2014) Orally active 7-substituted (4-Benzylphthalazin-1-yl)-2-methylpiperazin-1-yl]nicotinonitriles as active-site inhibitors of sphingosine 1-phosphate lyase for the treatment of multiple sclerosis. J Med Chem 57(12):5074–5084

    CAS  PubMed  Google Scholar 

  • Widlund AL, Baur JA, Vang O (2013) mTOR: more targets of resveratrol? Expert Rev Mol Med 15:e10

    PubMed  Google Scholar 

  • Witte AV, Kerti L, Margulies DS, Floel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34(23):7862–7870

    CAS  PubMed  Google Scholar 

  • Worrall D, Liang YK, Alvarez S et al (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56(1):64–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu JM, Hsieh TC, Yang CJ, Olson SC (2013) Resveratrol and its metabolites modulate cytokine-mediated induction of eotaxin-1 in human pulmonary artery endothelial cells. Ann N Y Acad Sci 1290:30–36

    CAS  PubMed  Google Scholar 

  • Xu G, Zhang LP, Chen LF, Hu CQ (1994) Inhibition of protein kinase C by stilbenoids. Yao Xue Xue Bao 29(11):818–822

    CAS  PubMed  Google Scholar 

  • Yamada M, Hayashi K, Ikeda S et al (2006) Inhibitory activity of plant stilbene oligomers against DNA topoisomerase II. Biol Pharm Bull 29(7):1504–1507

    CAS  PubMed  Google Scholar 

  • Yan R, Vassar R (2014) Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3):319–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan KX, Terashima K, Takaya Y, Niwa M (2001) A novel oligostilbene named (+)-viniferol A from the stem of Vitis vinifera ‘kyohou’. Tetrahedron 57(14):2711–2715

    CAS  Google Scholar 

  • Yan T, Wang T, Wei W et al (2012) Polyphenolic acetylcholinesterase inhibitors from Hopea chinensis. Planta Med 78(10):1015–1019

    CAS  PubMed  Google Scholar 

  • Zetterstrom CE, Hasselgren J, Salin O et al (2013) The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS ONE 8(12):e81969

    PubMed Central  PubMed  Google Scholar 

  • Zgoda-Pols JR, Freyer AJ, Killmer LB, Porter JR (2002) Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifolia ssp. oblongifolia. J Nat Prod 65(11):1554–1559

    CAS  PubMed  Google Scholar 

  • Zykova TA, Zhu F, Zhai X et al (2008) Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog 47(10):797–805

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng Gat Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, K.G., Gray, A.I., Anthony, N.G. et al. Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Arch Toxicol 88, 2213–2232 (2014). https://doi.org/10.1007/s00204-014-1386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1386-4

Keywords

Navigation