Skip to main content

Advertisement

Log in

Biofilm formation of pathogenic bacteria isolated from aquatic animals

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial biofilm formation is one of the dynamic processes, which facilitates bacteria cells to attach to a surface and accumulate as a colony. With the help of biofilm formation, pathogenic bacteria can survive by adapting to their external environment. These bacterial colonies have several resistance properties with a higher survival rate in the environment. Especially, pathogenic bacteria can grow as biofilms and can be protected from antimicrobial compounds and other substances. In aquaculture, biofilm formation by pathogenic bacteria has emerged with an increased infection rate in aquatic animals. Studies show that Vibrio anguillarum, V. parahaemolyticus, V. alginolyticus, V. harveyi, V. campbellii, V. fischeri, Aeromonas hydrophila, A. salmonicida, Yersinia ruckeri, Flavobacterium columnare, F. psychrophilum, Piscirickettsia salmonis, Edwardsiella tarda, E. ictaluri, E. piscicida, Streptococcus parauberis, and S. iniae can survive in the environment by transforming their planktonic form to biofilm form. Therefore, the present review was intended to highlight the principles behind biofilm formation, major biofilm-forming pathogenic bacteria found in aquaculture systems, gene expression of those bacterial biofilms and possible controlling methods. In addition, the possibility of these pathogenic bacteria can be a serious threat to aquaculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abebe GM (2020) The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol 2020:1–10

    Article  Google Scholar 

  • Acosta F, Montero D, Izquierdo M, Galindo-villegas J (2021) High-level biocidal products effectively eradicate pathogenic γ- proteobacteria biofilms from aquaculture facilities. Aquaculture 532:736004

    Article  CAS  Google Scholar 

  • Albornoz R, Valenzuela K, Pontigo JP, Sánchez P, Ruiz P, Avendaño-Herrera R, Romero A, Yáñez A (2017) Identification of chemotaxis operon cheYZA and cheA gene expression under stressful conditions in Piscirickettsia salmonis. Microb Pathogs 107:436–441

    Article  CAS  Google Scholar 

  • Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML (2017) Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 83:1–16

    Google Scholar 

  • Ashrafudoulla M, Mizan MFR, Park SH, Ha SD (2021) Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 61:1827–1851

    Article  CAS  Google Scholar 

  • Bai F, Han Y, Chen J, Zhang XH (2008) Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274:36–40

    Article  CAS  Google Scholar 

  • Bakhtiari NM, Tulabi Z, Alishahi M (2019) Biofilm-producing ability and antibiotic resistance pattern of pathogenic strains of aeromonas hydrophila. Jundishapur J Microbiol 12:e97640

    CAS  Google Scholar 

  • Bandara E, Ashoka Deepananda K, Ruwandeepika H (2018) Biofilm formation of aquatic pathogen, Vibrio campbellii on different contact surfaces. Int J Fish Aquat Stud 6:85–88

    Google Scholar 

  • Banerjee D, Shivapriya PM, Gautam PK, Misra K, Sahoo AK, Samanta SK (2020) A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proc Natl Acad Sci India Sect B - Biol Sci 90:243–259

    Article  CAS  Google Scholar 

  • Bao X, Zhu Q, Xue S, Xu Y, Ma X, Chen F, Hu X, Zhu Z, Chen S, Sun A, Wu D, Song Y, Qiu H (2016) Risk factors of clinically refractory CMV reactivation following allogeneic HSCT: a single-center study in China. Bone Marrow Transpl 51:1625–1627

    Article  CAS  Google Scholar 

  • Barceló AM, Cortina IC, Rodríguez AIA, Ballesteros CR (2016) Climatología del Balneario de Villavieja. An de la Real Acad Nac de Farm 82:108–126

    Google Scholar 

  • Batoni G, Maisetta G, Esin S (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochem Biophys Acta 1858:1044–1060

    Article  CAS  Google Scholar 

  • Bayston R, Fisher LE, Weber K (2009) An antimicrobial modified silicone peritoneal catheter with activity against both gram positive and gram negative bacteria. Biomaterials 30:3167–3173

    Article  CAS  Google Scholar 

  • Berger EK (2014) Piscirickettsia salmonis ; characterization and infection in the zebrafish model (June)

  • Brackman G, Celen S, Baruah K, Bossier P, Van Calenberg S, Nelis HJ, Coenye T (2009) AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ. Microbiology 155:4114–4122

    Article  CAS  Google Scholar 

  • Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661

    Article  CAS  Google Scholar 

  • Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  • Bridges AA, Fei C, Bassler BL (2020) Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal. Proc Natl Acad Sci USA 117:32639–32647

    Article  CAS  Google Scholar 

  • Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C (2020) Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 9:147

    Article  Google Scholar 

  • Cai W, Arias CR (2017) Biofilm formation on aquaculture substrates by selected bacterial fish pathogens. J Aquat Anim Health 29:95–104

    Article  CAS  Google Scholar 

  • Cai W, la Fuente D, Arias R (2013) Biofilm formation by the fish pathogen Flavobacterium columnare: development and parameters affecting surface attachment. Appl Environ Microbiol 79:5633–5642

    Article  CAS  Google Scholar 

  • Chan C, Burrows LL, Deber CM (2004) Helix induction in antimicrobial peptides by alginate in biofilms. J Biol Chem 279:38749–38754

    Article  CAS  Google Scholar 

  • Chrzanowska N, Załeska-Radziwiłł M (2014) The impacts of aluminum and zirconium nano-oxides on planktonic and biofilm bacteria. Desalination Water Treat 52:3680–3689

    Article  CAS  Google Scholar 

  • Climent JF (2009). The impacts of silver nanoparticles on planktonic and biofilm bacteria (July), 241

  • Coelho FL, Pereira MO (2013). Exploring new treatment strategies for Pseudomonas aeruginosa biofilm infections based on plant essential oils, 83–89

  • Coquet L, Cosette P, Junter GA, Beucher E, Saiter JM, Jouenne T (2002a) Adhesion of Yersinia ruckeri to fish farm materials: Influence of cell and material surface properties. Colloids Surf B 26:373–378

    Article  CAS  Google Scholar 

  • Coquet L, Cosette P, Quillet L, Petit F, Jouenne JGA, T, (2002b) Occurrence and phenotypic characterization of Yersinia ruckeri strains with biofilm-forming capacity in a rainbow trout farm. Appl Environ Microbiol 68:470–475

    Article  CAS  Google Scholar 

  • Costerton JW, Irvin RT (1981) The bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35:299–324

    Article  CAS  Google Scholar 

  • Da Rosa JV, Käefer K, Conceição NV, Conceição RCS, Timm CD (2017) Formação de biofilme por Vibrio parahaemolyticus isolados de pescados. Pesqui Vet Bras 37:339–345

    Article  Google Scholar 

  • Da Rosa JV, Da Conceição NV, Da Conceição RCS, Timm CD (2018) Biofilm formation by Vibrio parahaemolyticus on different surfaces and its resistance to sodium hypochlorite. Ciencia Rural 48:e20180612

    Article  Google Scholar 

  • DaddiOubekka S, Briandet R, Fontaine-Aupart MP, Steenkeste K (2012) Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms. Antimicrob Agents Chemother 56:3349–3358

    Article  CAS  Google Scholar 

  • de Alteriis E, Lombardi L, Falanga A, Napolano M, Galdiero S, Siciliano A, Galdiero E (2018) Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microb Pathog 125:189–195

    Article  Google Scholar 

  • De La Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EBM, Horsman S, Hancock REW (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704

    Article  Google Scholar 

  • De la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152

    Article  Google Scholar 

  • Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W, Bossier P (2007) The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 9:2486–2495

    Article  CAS  Google Scholar 

  • Desbois AP, Cook KJ, Buba E (2020) Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida. J Fish Dis 43:1373–1379

    Article  CAS  Google Scholar 

  • Diggles BK, Cooke SJ, Rose JD, Sawynok W (2011) Ecology and welfare of aquatic animals in wild capture fisheries. Rev Fish Biol Fish 21:739–765

    Article  Google Scholar 

  • Dong X, Fan X, Wang B, Shi X, Zhang XH (2013) Invasin of Edwardsiella tarda is essential for its haemolytic activity, biofilm formation and virulence towards fish. J Appl Microbiol 115:12–19

    Article  CAS  Google Scholar 

  • Du H, Pang M, Dong Y, Wu Y, Wang N, Liu J, Liu Y (2016) Identification and characterization of an Aeromonas hydrophila oligopeptidase gene pepF negatively related to biofilm formation. Front Microbiol 7:1–12

    Article  Google Scholar 

  • Duchaud E, Boussaha M, Loux V, Bernardet JF, Miche C, Kerouault B, Benmansour A (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763–769

    Article  CAS  Google Scholar 

  • Dumetz F, LaPatra SE, Duchaud E, Claverol S, Le Hénaff M (2007) The Flavobacterium psychrophilum OmpA, an outer membrane glycoprotein, induces a humoral response in rainbow trout. J Appl Microbiol 103:1461–1470

    Article  CAS  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately. Clin Microbiol Rev 15:155–166

    Article  CAS  Google Scholar 

  • Elexson N, Yaya R, Nor AM, Kantilal HK, Ubong A, Yoshitsugu N, Nishibuchi M, Son R (2014) Biofilm assessment of Vibrio parahaemolyticus from seafood using random amplified polymorphism DNA-PCR. Int Food Res J 21:59–65

    Google Scholar 

  • El-tawab AAA, Rizk AM, Selim AO, Elwakil RI (2021) Biofilm of Edwardsiella tarda isolated from fresh water fishes and its role in the bacterial virulence. 40: 1–5

  • Evans LV (2000) Biofilms: recent advances in their study and control. Harwood Academic, Amsterdam

    Book  Google Scholar 

  • Fernández A, Paz Villanueva M, González M, Fernández F, Latif F, Flores SN, Fernández H (2014) Adhesive and invasive capacities of Edwarsiella tarda isolated from South American sea lion. Braz J Microbiol 45:1095–1099

    Article  Google Scholar 

  • Fleming D, Rumbaugh K (2017) Approaches to dispersing medical biofilms. Microorganisms 5:15

    Article  Google Scholar 

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Publ Group 8:623–633

    CAS  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  Google Scholar 

  • Fong JCN, Yildiz FH (2007) The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 189:2319–2330

    Article  CAS  Google Scholar 

  • Fryer JL, Hedrick RP (2003) Piscirickettsia salmonis: a gram-negative intracellular bacterial pathogen of fish. J Fish Dis 26:251–262

    Article  CAS  Google Scholar 

  • Fujiwara-Nagata E, Eguchi M (2003) Survival of Vibrio anguillarum, a fish pathogen, in freshwater by forming biofilms. Microbes Environ 18:196–202

    Article  Google Scholar 

  • Galdiero E, Lombardi L, Falanga A, Libralato G, Guida M, Carotenuto R (2019) Biofilms: novel strategies based on antimicrobial peptides. Pharmaceutics 11:7

    Article  Google Scholar 

  • Garnett JA, Matthews S (2013) Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 13:739–755

    Article  Google Scholar 

  • Gavín R, Merino S, Altarriba M, Canals R, Shaw JG, Tomás JM (2003) Lateral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. FEMS Microbiol Lett 224:77–83

    Article  Google Scholar 

  • Goel N, Fatima SW, Kumar S, Sinha R, Khare SK (2019) Antimicrobial resistance in biofilms: exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors Nikky. Biotechnol Rep 30:e00613

    Article  Google Scholar 

  • Grau BL, Henk MC, Garrison KL, Olivier BJ, Schulz RM, O’Reilly KL, Pettis GS (2008) Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene cluster. Infect Immun 76:1485–1497

    Article  CAS  Google Scholar 

  • Gulla S, Bayliss S, Björnsdóttir B, Dalsgaard I, Haenen O, Jansson E, McCarthy U, Scholz F, Vercauteren M, Verner-Jeffreys D, Welch T, Wiklund T, Colquhoun DJ (2019) Biogeography of the fish pathogen Aeromonas salmonicida inferred by vapA genotyping. FEMS Microbiol Lett 366:1–7

    Google Scholar 

  • Hai LD, Chockmangmeepisan P, Sakulworakan R, Dong HT, Kayansamruaj P, Rung-Ruangkijkrai T, Pirarat N, Rodkhum C (2020) Virulence properties and pathogenicity of Flavobacterium columnare in hybrid red tilapia (Oreochromis sp.). Thai J Vet Med 50:103–108

    Google Scholar 

  • Hassan HA, Ding X, Zhang X, Zhu G (2019) Fish borne Edwardsiella tarda eha involved in the bacterial biofilm formation, hemolytic activity, adhesion capability and pathogenicity. Arch Microbiol 202:835–842

    Article  Google Scholar 

  • Hetta HF, Kadmy IMS, Al Khazaal SS, Abbas S, Suhail A, El-Mokhtar MA, Elkady AA (2021) Antibiofilm and antivirulence potential of silver nanoparticles against multidrug - resistant Acinetobacter baumannii. Sci Rep. https://doi.org/10.1038/s41598-021-90208-4

    Article  Google Scholar 

  • Hossain S, Wickramanayake MVKS, Dahanayake PS, Heo GJ (2020) Species identification, virulence markers and antimicrobial resistance profiles of Aeromonas sp. isolated from marketed hard-shelled mussel (Mytilus coruscus) in Korea. Lett Appl Microbiol 70:221–229

    Article  CAS  Google Scholar 

  • Hwang I, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726

    Article  CAS  Google Scholar 

  • Islam N, Kim Y, Ross JM, Marten MR (2014) Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions. Proteome Sci 12:1–12

    Article  Google Scholar 

  • Jacques M, Aragon V, Tremblay YDN (2010) Biofilm formation in bacterial pathogens of veterinary importance. Animal Health Res Rev 11:97–121

    Article  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    Article  CAS  Google Scholar 

  • Jayathilaka EHTT, Liyanage TD, Rajapaksha DC, Dananjaya SHS, Nikapitiya C, Whang I, De Zoysa M (2021) Octominin: an antibacterial and anti-biofilm peptide for controlling the multidrug resistance and pathogenic Streptococcus parauberis. Fish Shellfish Immunol 110:23–34

    Article  Google Scholar 

  • Karunasagar I, Otta SK, Karunasagar I (1996) Biofilm formation by Vibrio harveyi on surfaces. Aquac 140:241–245

    Article  Google Scholar 

  • Kerekes EB, Vidács A, Jenei JT, Gömöri C, Takó M, Chandrasekaran M, Shine K, Naiyf A, Judit K, Vágvolgyi C (2015) Essential oils against bacterial biofilm formation and quorum sensing of food-borne pathogens and spoilage microorganisms. Basic science, technological advances and educational programs. Formatex Research Center, Badajoz, pp 429–437

    Google Scholar 

  • Kim D, Dharaneedharan S, Jang Y, Heo M (2016) Inhibitory effect of transition metal gallium [Ga(NO3)3] on biofilm formation by fish pathogens. Microbiol Biotechnol Lett 44:535–539

    Article  CAS  Google Scholar 

  • Kim SG, Jun JW, Giri SS, Yun S, Kim HJ, Kim SW, Kang JW, Han SJ, Jeong D, Park SC (2019) Isolation and characterisation of pVa-21, a giant bacteriophage with anti-biofilm potential against Vibrio alginolyticus. Sci Rep 9:1–10

    Google Scholar 

  • King R, Flick G, Smith S, Pierson M, Boardman G, Coale C (2008) Response of bacterial biofilms in recirculating aquaculture systems to various sanitizers. J App Aquac 20:79–92

    Article  Google Scholar 

  • Kiran GS, Lipton AN, Kennedy J, Dobson ADW, Selvin J (2014) A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioeng Bugs 5:305–318

    Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:1–23

    Article  Google Scholar 

  • Laanto E, Penttinen RK, Bamford JK, Sundberg LR (2014) Comparing the different morphotypes of a fish pathogen - implications for key virulence factors in Flavobacterium columnare. BMC Microbiol 14:170

    Article  Google Scholar 

  • Lamari F, Khouadja S, Rtimi S (2018) Interaction of Vibrio to biotic and abiotic surfaces: relationship between hydrophobicity, cell adherence, biofilm production, and cytotoxic activity. Surfaces 1:187–201

    Article  Google Scholar 

  • Lange MD, Farmer BD, Declercq AM, Peatman E, Decostere A, Beck BH (2017) Sickeningly sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence. J Fish Dis 40:1613–1624

    Article  CAS  Google Scholar 

  • Lee Y, Kim N, Roh HJ, Kim A, Han HJ, Cho M, Kimi DH (2021) Transcriptome analysis unveils survival strategies of Streptococcus parauberis against fish serum. PLoS ONE 16(5):1–18. https://doi.org/10.1371/journal.pone.0252200

    Article  CAS  Google Scholar 

  • León M, Kokkari C, García K, Castillo D, Katharios P, Bastías R (2019) Diversification of Vibrio anguillarum driven by the bacteriophage CHOED. Front Microbiol 10:1–15

    Article  Google Scholar 

  • Levipan HA (2020) Improved understanding of biofilm development by Piscirickettsia salmonis reveals potential risks for the persistence and dissemination of piscirickettsiosis. Sci Rep 10:1–16

    Article  Google Scholar 

  • Levipan HA, Avendaño-Herrera R (2017) Different phenotypes of mature biofilm in Flavobacterium psychrophilum share a potential for virulence that differs from planktonic state. Front Cell Infect Microbiol 7:1–16

    Article  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  Google Scholar 

  • Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–195

    Article  CAS  Google Scholar 

  • Manju SB, Malaikozhundan B, Chen JC, Vaseeharan B (2014) Essential oil of Nigella sativa based synthesis of silver nanoparticles and its effect on pathogenic Vibrio harveyi and Vibrio parahaemolyticus isolated from aquatic environments. J Taiwan Fish Res 41:123–34

    Google Scholar 

  • Mndez J, Reimundo P, Prez-Pascual D, Navais R, Gmez E, Cascales DAJ (2012) An overview of virulence-associated factors of gram-negative fish pathogenic bacteria. Health and environment in aquaculture. Intech, London, UK. https://doi.org/10.5772/29837

    Chapter  Google Scholar 

  • Mohamed MEM, Ahmed HA, Rezk MM, Gharieb RMA, Abdel-Maksoud SA (2019) Aeromonas hydrophila from fish and humans: biofilm formation and genetic relatedness. Zagazig Vet J 47:340–351

    Article  Google Scholar 

  • Mohammed HH, Arias CR (2014) Epidemiology of columnaris disease affecting fishes within the same watershed. Dis Aquat Org 109:201–211

    Article  CAS  Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  CAS  Google Scholar 

  • Moorthy S, Watnick PI (2014) Genetic evidence that the Vibrio cholerae monolayer is a distinct stage. Molecular Mi 52:573–587

    Article  Google Scholar 

  • Niba ETE, Naka Y, Nagase M, Mori H, Kitakawa M (2007) A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14:237–246

    Article  CAS  Google Scholar 

  • Niu C, Afre S, Gilbert ES (2006) Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–494

    Article  CAS  Google Scholar 

  • Ormsby MJ, Davies RL (2021) Diversification of OmpA and OmpF of Yersinia ruckeri is independent of the underlying species phylogeny and evidence of virulence-related selection. Sci Rep 11:1–13

    Article  Google Scholar 

  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7:493–512

    Article  CAS  Google Scholar 

  • Raissa G, Waturangi DE, Wahjuningrum D (2020) Screening of antibiofilm and anti-quorum sensing activty of actinomycetes isolates extracts against aquaculture pathogenic bacteria. BMC Microbiol 20:1–10

    Article  Google Scholar 

  • Rajput A, Thakur A, Sharma S, Kumar M (2018) ABiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 46:D894–D900

    Article  CAS  Google Scholar 

  • Rodney MD (2000) Role of biofilms in antimicrobial resistance. ASAIO J 46(6):47–52

    Article  Google Scholar 

  • Rossi C, Chaves-lópez C, Serio A, Casaccia M, Maggio F, Paparella A (2020) Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: an updated review. Crit Rev Food Sci Nutr 62(8):2172–2191

    Article  Google Scholar 

  • Rowe HM, Withey JH, Neely MN (2014) Zebrafish as a model for zoonotic aquatic pathogens. Dev Comp Immunol 46:96–107

    Article  CAS  Google Scholar 

  • Rozas M, Enríquez R (2014) Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis 37:163–188

    Article  CAS  Google Scholar 

  • Saberpour M, Bakhshi B, Najar-Peerayeh S (2020) Evaluation of the antimicrobial and antibiofilm effect of chitosan nanoparticles as carrier for supernatant of mesenchymal stem cells on multidrug-resistant vibrio cholerae. Infect Drug Resist 13:2251–2260

    Article  CAS  Google Scholar 

  • Saggu SK, Jha G, Mishra PC (2019) Enzymatic degradation of biofilm by metalloprotease from microbacterium sp. Sks10. Front Bioeng Biotechnol 7:192

    Article  Google Scholar 

  • Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95

    Article  CAS  Google Scholar 

  • Sarkar P, Issac PK, Raju SV, Elumalai P, Arshad A, Arockiaraj J (2021) Pathogenic bacterial toxins and virulence influences in cultivable fish. Aquac Res 2020:1–16

    Google Scholar 

  • Sarropoulou E, Galindo-Villegas J, García-Alcázar A, Kasapidis P, Mulero V (2012) Characterization of European sea bass transcripts by RNA SEQ after oral vaccine against V. anguillarum. Mar Biotechnol 14:634–642

    Article  CAS  Google Scholar 

  • Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P (2016) The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine 12:1499–1509

    Article  CAS  Google Scholar 

  • Segev-Zarko L, Saar-Dover R, Brumfeld V, Mangoni ML, Shai Y (2015) Mechanisms of biofilm inhibition anddegradation by antimicrobial peptides. Biochem J 468:259–270

    Article  CAS  Google Scholar 

  • Semple SL, Bols NC, Lumsden JS, Dixon B (2020) Understanding the pathogenesis of Flavobacterium psychrophilum using the rainbow trout monocyte/macrophage-like cell line, RTS11, as an infection model. Microb Pathog 139:103910

    Article  CAS  Google Scholar 

  • Shi YJ, Fang QJ, Huang HQ, Gong CG, Hu YH (2019) HutZ is required for biofilm formation and contributes to the pathogenicity of Edwardsiella piscicida. Vet Res 50:1–15

    Article  Google Scholar 

  • Silayeva O, Engelstädter J, Barnes AC (2020) Evolutionary epidemiology of Streptococcus iniae: linking mutation rate dynamics with adaptation to novel immunological landscapes. Infect Genet Evol 85:104435

    Article  CAS  Google Scholar 

  • Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiol J 11:53–62

    Article  CAS  Google Scholar 

  • Sivasankari K, Ganesh M, Bothammal P, Natarajaseenivasan K (2018) Edwardsiella Tarda biofilm formation and inhibition by secondary metabolites of actinomycetes. Int J Res Anal Rev 5:123–129

    Google Scholar 

  • Smith AB, Siebeling RJ (2003) Identification of genetic loci required for capsular expression in Vibrio vulnificus. Infect Immun 71:1091–1097

    Article  CAS  Google Scholar 

  • Smith PA, Pizarro P, Ojeda P, Contreras J, Oyanedel S, Larenas J (1999) Routes of entry of Piscirickettsia salmonis in rainbow trout Oncorhynchus mykiss. Dis Aquat Org 37:165–172

    Article  CAS  Google Scholar 

  • Snoussi M, Noumi E, Hajlaoui H, Usai D, Sechi LA, Zanetti S, Bakhrouf A (2009) High potential of adhesion to abiotic and biotic materials in fish aquaculture facility by Vibrio alginolyticus strains. J Appl Microbiol 106:1591–1599

    Article  CAS  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  CAS  Google Scholar 

  • Soumya Haldar SC (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Marine Sci Res Dev S 1:002

    Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    Article  CAS  Google Scholar 

  • Suci PA, Mittelman MW, Yu FP, Geesey GG (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38:2125–2133

    Article  CAS  Google Scholar 

  • Sun L, Chen H, Lin W, Lin X (2017) Quantitative proteomic analysis of Edwardsiella tarda in response to oxytetracycline stress in biofilm. J Proteomics 150:141–148

    Article  CAS  Google Scholar 

  • Sundell K, Wiklund T (2011) Effect of biofilm formation on antimicrobial tolerance of Flavobacterium psychrophilum. J Fish Dis 34:373–383

    Article  CAS  Google Scholar 

  • Tan D, Dahl A, Middelboe M (2015) Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Appl Environ Microbiol 81:4489–4497

    Article  CAS  Google Scholar 

  • Tasneem U, Yasin N, Nisa I, Shah F, Rasheed U, Momin F, Zaman S, Qasim M (2018) Biofilm producing bacteria: a serious threat to public health in developing countries. J Food Sci Nutr 01:25–31

    Google Scholar 

  • Tobback E, Decostere A, Hermans K, Haesebrouck F, Chiers K (2007) Yersinia ruckeri infections in salmonid fish. J Fish Dis 30:257–268

    Article  CAS  Google Scholar 

  • Toole GO, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Vestby LK, Grønseth T, Simm R, Nesse LL (2020) Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9:59

    Article  CAS  Google Scholar 

  • Vidal JM, Miranda CD, De la Fuente M, Alarcón M, Aroca G, Sossa K, Ruiz P, Urrutia H (2020) Formation of biofilms of the salmon pathogen Flavobacterium psychrophilum in differents surfaces using the CDC biofilm reactor. Aquaculture 514:734459

    Article  CAS  Google Scholar 

  • Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, turbinaria conoides, and their antimicrofouling activity. Sci World J 2014:938272

    Article  Google Scholar 

  • Vinay TN, Ray AK, Avunje S, Thangaraj SK, Krishnappa H, Viswanathan B, Patil PK (2019) Vibrio harveyi biofilm as immunostimulant candidate for high-health pacific white shrimp, Penaeus vannamei farming. Fish Shellfish Immunol 95:498–505

    Article  CAS  Google Scholar 

  • Vitanza L, Maccelli A, Marazzato M, Scazzocchio F, Comanducci A, Fornarini S, Longhi C (2018) AC SC. Microb Pathog 2018(11):025

    Google Scholar 

  • Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2010:a000398

    Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation. Antimicrob Agents Chemother 47:317–323

    Article  CAS  Google Scholar 

  • Wrobel A, Leo JC, Linke D (2019) Overcoming fish defences : the virulence factors of Yersinia ruckeri. Genes 5:7–8

    Google Scholar 

  • Wrobel A, Saragliadis A, Pérez-Ortega J, Sittman C, Göttig S, Liskiewicz K, Spence MH, Schneider K, Leo JC, Arenas J, Linke D (2020) The inverse autotransporters of Yersinia ruckeri, YrInv and YrIlm, contribute to biofilm formation and virulence. Environ Microbiol 22:2939–2955

    Article  CAS  Google Scholar 

  • Xu T, Su Y, Xu Y, He Y, Wang B, Dong X, Zhang XH (2014) Mutations of flagellar genes fliC12, fliA and flhDC of Edwardsiella tarda attenuated bacterial motility, biofilm formation and virulence to fish. J Appl Microbiol 116:236–244

    Article  CAS  Google Scholar 

  • Yasir M, Willcox MDP, Dutta D (2018) Action of antimicrobial peptides against bacterial biofilms. Materials 11:2468

    Article  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: Identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033

    Article  CAS  Google Scholar 

  • Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118

    Article  CAS  Google Scholar 

  • Yildiz FH, Liu XS, Heydorn A, Schoolnik GK (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515

    Article  CAS  Google Scholar 

  • Yin W, Wang Y, Liu L, He J (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20:3423

    Article  CAS  Google Scholar 

  • Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J (2021) Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 47:57–78

    Article  CAS  Google Scholar 

  • Yip ES, Grublesky BT, Hussa EA, Visick KL (2005) A novel, conserved cluster of genes promotes symbiotic colonization and σ54-dependent biofilm formation by Vibrio fischeri. Mol Microbiol 57:1485–1498

    Article  CAS  Google Scholar 

  • Zhang M, Jiao XD, Hu YH, Sun L (2009) Attenuation of Edwardsiella tarda virulence by small peptides that interfere with LuxS/autoinducer type 2 quorum sensing. Appl Environ Microbiol 75:3882–3890

    Article  CAS  Google Scholar 

  • Zhao J, Li X, Hou X, Quan C, Chen M (2019) Widespread existence of quorum sensing inhibitors in marine bacteria: potential drugs to combat pathogens with novel strategies. Mar Drugs 17:275

    Article  CAS  Google Scholar 

  • Zhu B, Song L, Kong X, Macleod LC, Xu P (2018) A novel regulator modulates glucan production, cell aggregation and biofilm formation in Streptococcus sanguinis SK36. Front Microbiol 9:1–14

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Joon Heo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, L.A.D.S., Heo, GJ. Biofilm formation of pathogenic bacteria isolated from aquatic animals. Arch Microbiol 205, 36 (2023). https://doi.org/10.1007/s00203-022-03332-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03332-8

Keywords

Navigation