Skip to main content
Log in

Effect of a single amino acid substitution G98D in a ribosome-associated essential GTPase, CgtA, on the growth and morphology of Vibrio cholerae

  • Brief Report
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

CgtA, a highly conserved 50S ribosome-associated essential GTPase, acts as a repressor of the stringent stress response under nutrient-rich growth conditions to suppress basal levels of the alarmone ppGpp in V. cholerae. To further explore the in vivo functionality of CgtA, we introduced an amino acid substitution, i.e., Gly98Asp, in a conserved glycine residue in the N-terminal domain. The constructed V. cholerae mutant was designated CgtA(G98D). Comparison of cell sizes of the CgtA(G98D)mutant with its isogenic wild-type (Wt) strain N16961 under different phases of growth by Transmission Electron Microscopy (TEM) and statistical analysis suggests that CgtA may control the cell size of V. cholerae. The cell length is significantly reduced, corresponding to the delayed growth in the mid-logarithmic phase. The differences in the cell length of CgtA(G98D) and Wt are indistinguishable in the late logarithmic phase. During the stationary phase, marked by higher OD600, a sub-population of CgtA(G98D) cells outnumbered the Wt cells lengthwise. CgtA(G98D) cells appeared slenderer than Wt cells with significantly reduced cell width. However, the centerline curvature is preserved in CgtA(G98D) cells. We propose that in addition to its multitude of intracellular roles, CgtA may influence the cell size of V. cholerae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All requests for data, strains, and plasmids constructed in this study should be directed to the corresponding author.

References

  • Ali A, Johnson JA, Franco AA, Metzger DJ, Connell TD, Morris JG Jr, Sozhamannan S (2000) Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae. Infect Immun 68(4):1967–1974

    Article  CAS  Google Scholar 

  • Buglino J, Shen V, Hakimian P, Lima CD (2002) Structural and biochemical analysis of the CgtA GTP binding protein. Structure 10:1581–1592

    Article  CAS  Google Scholar 

  • Büke F, Grilli J, Cosentino Lagomarsino M, Bokinsky G, Tans SJ (2022) ppGpp is a bacterial cell size regulator. Curr Biol 32(4):870-877.e5

    Article  Google Scholar 

  • Cesar S, Huang KC (2017) Thinking big: the tunability of bacterial cell size. FEMS Microbiol Rev 41(5):672–678

    Article  CAS  Google Scholar 

  • Chatterjee A, Datta PP (2015) Two conserved amino acids of juxtaposed domains of a ribosomal maturation protein CgtA sustain its optimal GTPase activity. Biochem Biophys Res Commun 461(4):636–641

    Article  CAS  Google Scholar 

  • Chatterjee A, Datta PP (2016) Intrinsic GTPase activity of a ribosomal maturation protein CgtA is associated with its inter-domain movement: insights from MD simulations and biochemical studies. J Biomol Struct Dyn 35:2578–2587

  • Chatterjee A, Acharjee A, Das S, Datta PP (2019) Deletion analyses reveal insights into the domain-specific activities of an essential GTPase CgtA in Vibrio cholerae. Arch Biochem Biophys 665:143–151

    Article  CAS  Google Scholar 

  • Corrigan RM, Bellows LE, Wood A, Gründling A (2016) ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci USA 113(12):E1710–E1719

    Article  CAS  Google Scholar 

  • Feng B, Mandava CS, Guo Q, Wang J, Cao W, Li N, Zhang Y, Zhang Y, Wang Z, Wu J, Sanyal S, Lei J, Gao N (2014) Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol 12(5):e1001866

    Article  Google Scholar 

  • Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W (2017) Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 292(14):5871–5883

    Article  CAS  Google Scholar 

  • Hill NS, Buske PJ, Shi Y, Levin PA (2013) A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 9(7):e1003663

    Article  CAS  Google Scholar 

  • Irving SE, Choudhury NR, Corrigan RM (2021) The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 19(4):256–271

    Article  CAS  Google Scholar 

  • Jiang M, Datta K, Walker A, Strahler J, Bagamasbad P, Andrews PC, Maddock JR (2006) The Escherichia coli GTPase CgtAE is involved in the late steps of large ribosome assembly. J Bacteriol 188(19):6757–6770

    Article  CAS  Google Scholar 

  • Jiang M, Sullivan SM, Wout PK, Maddock JR (2007) G-protein control of the ribosome-associated stress response protein SpoT. J Bacteriol 189(17):6140–6147

    Article  CAS  Google Scholar 

  • Kobayashi G, Moriya S, Wada C (2001) Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol Microbiol 41(5):1037–1051

    Article  CAS  Google Scholar 

  • Kukimoto-Niino M, Murayama K, Inoue M, Terada T, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S (2004) Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol 337(3):761–770

    Article  CAS  Google Scholar 

  • Kuo S, Demeler B, Haldenwang WG (2008) The growth-promoting and stress response activities of the Bacillus subtilis GTP binding protein CgtA are separable by mutation. J Bacteriol 190:6625–6635

    Article  CAS  Google Scholar 

  • Levin PA, Angert ER (2015) Small but mighty: cell size and bacteria. Cold Spring Harb Perspect Biol 7(7):a019216

    Article  Google Scholar 

  • Lin B, Maddock JR (2001) The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor. FEBS Lett 489:108–111

    Article  CAS  Google Scholar 

  • Lin B, Thayer DA, Maddock JR (2004) The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit. J Bacteriol 186(2):481–489

    Article  CAS  Google Scholar 

  • Maddock J, Bhatt A, Koch M, Skidmore J (1997) Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP- binding proteins. J Bacteriol 179:6426–6431

    Article  CAS  Google Scholar 

  • Maouche R, Burgos HL, My L, Viala JP, Gourse RL, Bouveret E (2016) Coexpression of Escherichia coli obgE, Encoding the Evolutionarily Conserved Obg GTPase, with Ribosomal Proteins L21 and L27. J Bacteriol 198(13):1857–1867

    Article  CAS  Google Scholar 

  • Nikolay R, Hilal T, Schmidt S, Qin B, Schwefel D, Vieira-Vieira CH, Mielke T, Bürger J, Loerke J, Amikura K, Flügel T, Ueda T, Selbach M, Deuerling E, Spahn CMT (2021) Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization. Mol Cell 81(6):1200-1215.e9

    Article  CAS  Google Scholar 

  • Ochi K (1986) Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J Gen Microbiol 132(9):2621–2631

    CAS  PubMed  Google Scholar 

  • Ochi K, Kandala JC, Freese E (1981) Initiation of Bacillus subtilis sporulation by the stringent response to partial amino acid deprivation. J Biol Chem 256(13):6866–6875

    Article  CAS  Google Scholar 

  • Okamoto S, Itoh M, Ochi K (1997) Molecular cloning and characterization of the CgtA gene of Streptomyces griseus in relation to the onset of morphological differentiation. J Bacteriol 179:170–179

    Article  CAS  Google Scholar 

  • Persky NS, Ferullo DJ, Cooper DL, Moore HR, Lovett ST (2009) The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 73(2):253–266

    Article  CAS  Google Scholar 

  • Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51(3):246–255

    Article  CAS  Google Scholar 

  • Raskin DM, Judson N, Mekalanos JJ (2007) Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc Natl Acad Sci USA 104:4636–4641

    Article  CAS  Google Scholar 

  • Schaechter M, Maaloe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella Typhimurium. J Gen Microbiol 19:592–606

  • Schreiber G, Ron EZ, Glaser G (1995) ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr Microbiol 30(1):27–32

    Article  CAS  Google Scholar 

  • Schuech R, Hoehfurtner T, Smith DJ, Humphries S (2019) Motile curved bacteria are Pareto-optimal. Proc Natl Acad Sci U S A 116(29):14440–14447

    Article  CAS  Google Scholar 

  • Shah S, Das B, Bhadra RK (2008) Functional analysis of the essential GTP-binding-protein-coding gene cgtA of Vibrio cholerae. J Bacteriol 190(13):4764–4771

    Article  CAS  Google Scholar 

  • Steinchen W, Zegarra V, Bange G (2020) (p)ppGpp: magic modulators of bacterial physiology and metabolism. Front Microbiol 7(11):2072

    Article  Google Scholar 

  • Ulanowska K, Sikora A, Wegrzyn G, Czyz A (2003) Role of the cgtA gene function in DNA replication of extrachromosomal elements in Escherichia coli. Plasmid 50(1):45–52

    Article  CAS  Google Scholar 

  • van Teeseling MCF, de Pedro MA, Cava F (2017) Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Front Microbiol 10(8):126

    Google Scholar 

  • Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J, Versées W, Hofkens J, Jansen M, Fauvart M, Michiels J (2015) Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell 59(1):9–21

    Article  CAS  Google Scholar 

  • Westfall CS, Levin PA (2017) Bacterial cell size: multifactorial and multifaceted. Annu Rev Microbiol 8(71):499–517

    Article  Google Scholar 

  • Woldringh CL, Grover NB, Rosenberger RF, Zaritsky A (1980) Dimensional rearrangement of rod-shaped bacteriafollowing nutritional shift-up. II. experiments with Escherichia coli B/r. J Theor Biol 86(3):441–454

    Article  CAS  Google Scholar 

  • Young KD (2007) Bacterial morphology: why have different shapes? Curr Opin Microbiol 10(6):596–600

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Rupak K. Bhadra from the Indian Institute of Chemical Biology, Kolkata, for providing the Wt Vibrio cholerae N16961 strain, Dr. Ananya Chatterjee from the ICMR-NICED, Kolkata, for helpful suggestions, Indian Institute of Science Education & Research (IISER), Kolkata for providing the instrumentation facility. A Ph.D. fellowship from IISER-Kolkata supports SD. The authors acknowledge DST-SERB of India (File Number: EMR/2015/002473) for providing research funds to PPD.

Author information

Authors and Affiliations

Authors

Contributions

Concept, planning, experimental design, data analysis, and manuscript writing by PPD. Experimental design, execution, data analysis, and manuscript writing by SD.

Corresponding author

Correspondence to Partha Pratim Datta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any authors.

Consent to participate

Not applicable for this study.

Consent to publish

Not applicable for this study.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Datta, P.P. Effect of a single amino acid substitution G98D in a ribosome-associated essential GTPase, CgtA, on the growth and morphology of Vibrio cholerae. Arch Microbiol 204, 617 (2022). https://doi.org/10.1007/s00203-022-03233-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03233-w

Keywords

Navigation