Skip to main content
Log in

Nonomuraea phyllanthi sp. nov., an endophytic actinomycete isolated from the leaf of Phyllanthus amarus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A novel actinomycete, strain PA1-10T, isolated from the leaf of Phyllanthus amarus collected from Bangkok, Thailand, was characterized taxonomically using a polyphasic approach. This strain contained the characteristics consistent with those of members of the genus Nonomuraea. It formed short rugose spore chain on aerial mycelium. The diamino acid in cell wall peptidoglycan was meso-diaminopimelic acid. Galactose, glucose, madurose, mannose, and ribose were found in whole-cell hydrolysates. Predominant menaquinones were MK-9 (H2), MK-9 (H4), and MK-9 (H6). Major cellular fatty acids were iso-C16:0 and C17:0 10-methyl. Phospholipid profiles were composed of phosphatidylinositol mannoside (PIM), lyso-phosphatidylethanolamine (lyso-PE), phosphatidylethanolamine (PE), methylphosphatidylethanolamine (PME), diphosphatidylglycerol (DPG), and phosphatidylglycerol (PG). The G + C content of DNA was 71.2 mol%. Strain PA1-10T showed the highest 16S rRNA gene sequence similarity with Nonomuraea candida JCM 15928T (98.35%) and shared the same node with Nonomuraea maritima JCM 18321T in the phylogenetic tree analysis. Based on the phenotypic characteristics, DNA–DNA relatedness, and average nucleotide identity (ANI), the strain is considered to represent a novel species of the genus Nonomuraea, for which the name Nonomuraea phyllanthi is proposed. The type strain is PA1-10T (= JCM 33073T = NBRC 112774T = TISTR 2497T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ara I, Kudo T, Matsumoto A, Takahashi Y, Omura S (2007) Nonomuraea maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere mud. J Gen Appl Microbiol 53:159–166

    CAS  PubMed  Google Scholar 

  • Arai T (1975) Culture media for actinomycetes. The Society for Actinomycetes, Tokyo

    Google Scholar 

  • Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Google Scholar 

  • Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al (2012) SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7:e48053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camas M, Sazak A, Spröer C, Klenk HP, Cetin D, Guven K, Sahin N (2013) Nonomuraea jabiensis sp. nov., isolated from arid soil. Int J Syst Evol Microbiol 63(1):212–218

    PubMed  Google Scholar 

  • Chiba S, Suzuki M, Ando K (1999) Taxonomic re-evaluation of ‘Nocardiopsis’ sp. K-252T (= NRRL 15532T): a proposal to transfer this strain to the genus Nonomuraea as Nonomuraea longicatena sp. nov. Int J Syst Bacteriol 49:1623–1630

    PubMed  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Huang H, Liu M, Zhong W, Mo K, Zhu J et al (2018) Nonomuraea mangrovi sp. nov., an actinomycete isolated from mangrove soil. Int J Syst Evol Microbiol 68:3144–3148

    CAS  PubMed  Google Scholar 

  • Kämpfer P (2012) Genus VI. Nonomuraea corrig. Zhang, Wang and Ruan 1998b, 149VP. In: Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K et al (eds) Bergey’s manual of systematic bacteriology, part B, vol 5, 2nd edn. Springer, New York, pp 1844–1861

    Google Scholar 

  • Kämpfer P, Kroppenstedt RM, Grün-Wollny I (2005) Nonomuraea kuesteri sp. nov. Int J Syst Evol Microbiol 55(2):847–851

    PubMed  Google Scholar 

  • Kelly KL (1964) Inter-society color council: National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. US Government Printing Office, Washington

    Google Scholar 

  • Klykleung N, Tanasupawat S, Pittayakhajonwut P, Ohkuma M, Kudo T (2015) Amycolatopsis stemonae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 65:3894–3899

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148

    Google Scholar 

  • Le Roes M, Meyers PR (2008) Nonomuraea candida sp. nov., a new species from South African soil. Antonie van Leeuwenhoek 3(1–2):133–139

    Google Scholar 

  • Meier-Kolthoff PJ, Alexander FA, Klenk HP, Göker M (2013) Genome sequence based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Google Scholar 

  • Mikami H, Ishida Y (1983) Post-column fluorometric detection of reducing sugar in high-performance liquid chromatography using arginine. Bunseki Kagaku 32:E207–E210

    CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Google Scholar 

  • Niemhom N, Chutrakul C, Suriyachadkun C, Thawai C (2017) Nonomuraea stahlianthi sp. nov., an endophytic actinomycete isolated from the stem of Stahlianthus campanulatus. Int J Syst Evol Microbiol 67:2879–2884

    CAS  PubMed  Google Scholar 

  • Nonomura H, Ohara Y (1971) Distribution of actinomycetes in soil. XI. Some new species of the genus Actinomadura. J Ferment Technol 49:904–912

    Google Scholar 

  • Quadri SR, Tian XP, Zhang J, Li J, Nie GX et al (2015) Nonomuraea indica sp. nov., novel actinomycetes isolated from lime-stone open pit mine, India. J Antibiot 68:491–495

    CAS  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    CAS  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) J SpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    CAS  PubMed  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc., Newark, p 1990

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16(6):313–340

    Google Scholar 

  • Sripreechasak P, Phongsopitanun W, Supong K, Pittayakhajonwut P, Kudo T, Ohkuma M, Tanasupawat S (2017) Nonomuraea rhodomycinica sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 67:1683–1687

    CAS  PubMed  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sungthong R, Nakaew N (2015) The genus Nonomuraea: a review of a rare actinomycete taxon for novel metabolites. J Basic Microbiol 55:554–565

    PubMed  Google Scholar 

  • Tamaoka J (1994) Determination of DNA base composition. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 463–470

    Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Shi J, Huang Y, Wu Y, Deng X (2017) Nonomuraea ceibae sp. nov., an actinobacterium isolated from Ceiba speciosa rhizosphere. Int J Syst Evol Microbiol 67:1158–1162

    CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) International committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • Williams ST, Cross T (1971) Chapter XI actinomycetes. Methods Microbiol 4:295–334

    Google Scholar 

  • Xi L, Zhang L, Ruan J, Huang Y (2011) Nonomuraea maritima sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 61:2740–2744

    CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kown S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequence and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48:411–422

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Associate Professor Thatree Phadungcharoen, the Faculty of Pharmaceutical Sciences, Chulalongkorn University for the plant sample and the Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for providing research facilities.

Funding

This study was supported by the Thailand Research Fund for a 2017 Royal Golden Jubilee Ph.D. Program as a scholarship to N. K. and the Grant for International Research Integration, Research Pyramid, Ratchadaphiseksomphot Endowment Fund (GCURP_58_01_33_01), Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somboon Tanasupawat.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klykleung, N., Yuki, M., Kudo, T. et al. Nonomuraea phyllanthi sp. nov., an endophytic actinomycete isolated from the leaf of Phyllanthus amarus. Arch Microbiol 202, 55–61 (2020). https://doi.org/10.1007/s00203-019-01717-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01717-w

Keywords

Navigation