Skip to main content

Advertisement

Log in

Boosting the growth of the probiotic strain Lactobacillus paracasei ssp. paracasei F19

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Single so-called booster substances were added to the fermentation medium of the probiotic strain Lactobacillus (L.) paracasei ssp. paracasei F19 to enhance its growth. A wide screening was carried out in microtiter plates and a statistical analysis of the growth parameters was performed. CFU counts were used to correlate the increase in OD590nm with the increase in viable cell number. Sodium ascorbate, sodium pyruvate, manganese sulfate and cysteine had a remarkable boosting effect on the growth of L. paracasei F19. Three of the boosters increased the growth rate of the strain and led to a higher cell density and biomass yield in laboratory conditions. Cysteine significantly shortened the lag phase, therefore reducing the fermentation times. The boosters were tested on four additional Lactobacillus species and their growth boosting activity was retained. To investigate whether the growth boosters could improve the tolerance of L. paracasei F19 to the adverse condition in the GI tract, additional tests were performed. Sodium ascorbate and sodium pyruvate exerted a certain antioxidant effect, as they improved the tolerance of L. paracasei F19 to H2O2. Sodium ascorbate enhanced the growth of the strain in low pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aasen IM, Moretro T, Katla T, Axelsson L, Storro I (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Ezkauriatza EJ, Aguilar-Yáñez JM, Ramírez-Medrano A, Alvarez MM (2010) Production of probiotic biomass (Lactobacillus casei) in goat milk whey: Comparison of batch, continuous and fed-batch cultures. Bioresour Technol 101(8):2837–2844

    Article  CAS  PubMed  Google Scholar 

  • Andrae U, Singh J, Ziegler-Skylakakis K (1985) Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett 28(2–3):93–98

    Article  CAS  PubMed  Google Scholar 

  • Anvari M, Khayati G, Rostami S (2014) Optimisation of medium composition for probiotic biomass production using response surface methodology. J Dairy Res 81(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Aronsson L, Huang Y, Parini P, Korach-Andre M, Hakansson J, Gustafsson JA, Pettersson S, Arulampalam V, Rafter J (2010) Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 5(9):e13087. doi:10.1371/journal.pone.0013087

    Article  PubMed  PubMed Central  Google Scholar 

  • Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L, Poli A, Pregliasco F, Salvini F, Zuccotti GV (2011) Probiotics and health: an evidence-based review. Pharmacol Res 63(5):366–376

    Article  CAS  PubMed  Google Scholar 

  • Barlow S, Chesson A, Collins JD, Dybing E, Flynn A, Hardy A, Knaap A, Kuiper H, Le Neindre P, Schans J, Schlatter J, Silano V, Skerfving S, Vannier P (2007) Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. Opinion of the Scientific Committee. EFSA J 587:1–16

    Google Scholar 

  • Begtrup LM, de Muckadell OB, Kjeldsen J, Christensen RD, Jarbol DE (2013) Long-term treatment with probiotics in primary care patients with irritable bowel syndrome–a randomised, double-blind, placebo controlled trial. Scand J Gastroenterol 48(10):1127–1135

    Article  PubMed  Google Scholar 

  • Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM (1986) The antioxidant role of vitamin C. Adv Free Radic Biol Med 2(2):419–444

    Article  CAS  Google Scholar 

  • Brasca M, Morandi S, Lodi R, Tamburini A (2007) Redox potential to discriminate among species of lactic acid bacteria. J Appl Microbiol 103(5):1516–1524

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RL, Whiting RC, Damert WC (1997) When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol 14(4):313–326

    Article  Google Scholar 

  • Capuani A, Behr J, Vogel RF (2013) Influence of lactic acid bacteria on redox status and on proteolytic activity of buckwheat (Fagopyrum esculentum Moench) sourdoughs. Int J Food Microbiol 165(2):148–155

    Article  CAS  PubMed  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Dong Y, Su P, Xiao X (2014) Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn2+. Appl Biochem Biotechnol 174(5):1752–1760

    Article  CAS  PubMed  Google Scholar 

  • CocaignBousquet M, Garrigues C, Loubiere P, Lindley ND (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 70(2–4):253–267

    Article  CAS  Google Scholar 

  • Compare D, Rocco A, Sgamato C, Coccoli P, Campo SM, Nazionale I, Larussa T, Luzza F, Chiodini P, Nardone G (2015) Lactobacillus paracasei F19 versus placebo for the prevention of proton pump inhibitor-induced bowel symptoms: a randomized clinical trial. Dig Liver Dis 47(4):273–279

    Article  CAS  PubMed  Google Scholar 

  • Crittenden R, Saarela M, Mättö J, Ouwehand AC, Salminen S, Pelto L, Vaughan EE, Vos WMD, Wright AV, Fondén R, Mattila-Sandholm T (2002) Lactobacillus paracasei subsp. paracasei F19: survival, ecology and safety in the human intestinal tract—a survey of feeding studies within the PROBDEMO Project. Microb Ecol Health Dis 14(1):22–26

    Article  Google Scholar 

  • Cui S, Zhao J, Liu X, Chen YQ, Zhang H, Chen W (2016) Maximum-biomass prediction of homofermentative Lactobacillus. J Biosci Bioeng 122(1):52–57

    Article  CAS  PubMed  Google Scholar 

  • Dave RI, Shah NP (1997) Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int Dairy J 7(6–7):435–443

    Article  CAS  Google Scholar 

  • Di Cerbo A, Palmieri B (2013) Lactobacillus Paracasei subsp Paracasei F19; a farmacogenomic and clinical update. Nutr Hosp 28(6):1842–1850

    PubMed  Google Scholar 

  • Du C, Yan H, Zhang Y, Li Y, Cao Z (2006) Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol 69(5):554–563

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Gonzalez I, Quijano G, Ramirez G, Cruz-Guerrero A (2011) Probiotics and prebiotics–perspectives and challenges. J Sci Food Agric 91(8):1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick JJ, Ahrens M, Smith S (2001) Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate. Process Biochem 36(7):671–675

    Article  CAS  Google Scholar 

  • Giandomenico AR, Cerniglia GE, Biaglow JE, Stevens CW, Koch CJ (1997) The importance of sodium pyruvate in assessing damage produced by hydrogen peroxide. Free Radic Biol Med 23(3):426–434

    Article  CAS  PubMed  Google Scholar 

  • Gill RT, Cha HJ, Jain A, Rao G, Bentley WE (1998) Generating controlled reducing environments in aerobic recombinant Escherichia coli fermentations: effects on cell growth, oxygen uptake, heat shock protein expression, and in vivo CAT activity. Biotechnol Bioeng 59(2):248–259

    Article  CAS  PubMed  Google Scholar 

  • Guilbaud M, Zagorec M, Chaillou S, Champomier-Verges MC (2012) Intraspecies diversity of Lactobacillus sakei response to oxidative stress and variability of strain performance in mixed strains challenges. Food Microbiol 29(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73(2):374s–379s

    CAS  PubMed  Google Scholar 

  • Hickey MW, Hillier AJ, Jago GR (1983) Metabolism of pyruvate and citrate in lactobacilli. Aust J Biol Sci 36(5–6):487–496

    Article  CAS  PubMed  Google Scholar 

  • Kahm M, Hasenbrink G, Lichtenberg-Frate H, Ludwig J, Kschischo M (2010) “Grofit: fitting biological growth curves with R. J Stat Softw 33(7):1–21

    Article  Google Scholar 

  • Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27(2–3):263–290

    Article  CAS  PubMed  Google Scholar 

  • Lew LC, Liong MT, Gan CY (2013) Growth optimization of Lactobacillus rhamnosus FTDC 8313 and the production of putative dermal bioactives in the presence of manganese and magnesium ions. J Appl Microbiol 114(2):526–535

    Article  CAS  PubMed  Google Scholar 

  • Lew LC, Choi SB, Tan PL, Liong MT (2014) Mn2 + and Mg2 + synergistically enhanced lactic acid production by Lactobacillus rhamnosus FTDC 8313 via affecting different stages of the hexose monophosphate pathway. J Appl Microbiol 116(3):644–653

    Article  CAS  PubMed  Google Scholar 

  • Linares D, Michaud P, Delort AM, Traikia M, Warrand J (2011) Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J Agric Food Chem 59(8):4140–4147

    Article  CAS  PubMed  Google Scholar 

  • Liu CG, Lin YH, Bai FW (2011) Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. J Biotechnol 153(1–2):42–47

    Article  CAS  PubMed  Google Scholar 

  • Ljungh Å, Lan J, Yanagisawa N (2002) Isolation, selection and characteristics of Lactobacillus paracasei subsp. paracasei F19. Microb Ecol Health Dis 14(1):4–6

    Article  Google Scholar 

  • Lombardo L (2008) New insights into Lactobacillus and functional intestinal disorders. Minerva Gastroenterol Dietol 54(3):287–293

    CAS  PubMed  Google Scholar 

  • Mattessich J, Cooper JR (1989) The spectrophotometric determination of diacetyl. Anal Biochem 180(2):349–350

    Article  CAS  PubMed  Google Scholar 

  • Mattila-Sandholm T (1999) The PROBDEMO project: Demonstration of the nutritional functionality of probiotic foods. Trends Food Sci Technol 10(12):385–386

    Article  CAS  Google Scholar 

  • Matto J, Fonden R, Tolvanen T, von Wright A, Vilpponen-Salmela T, Satokari R, Saarela M (2006) Intestinal survival and persistence of probiotic Lactobacillus and Bifidobacterium strains administered in triple-strain yoghurt. Int Dairy J 16(10):1174–1180.

    Article  Google Scholar 

  • Monnet C, Schmitt P, Divies C (1994) Diacetyl production in milk by an alpha-acetolactic acid accumulating strain of Lactococcus-Lactis Ssp lactis biovar diacetylactis. J Dairy Sci 77(10):2916–2924

    Article  CAS  Google Scholar 

  • Morelli L (2000) In vitro selection of probiotic lactobacilli: a critical appraisal. Curr Issues Intest Microbiol 1(2):59–67

    CAS  PubMed  Google Scholar 

  • Morelli L, Campominosi E (2002) Genetic stability of Lactobacillus paracasei subsp. paracasei F19. Microb Ecol Health Dis 14(1):14–16

    Article  Google Scholar 

  • Morishita T, Fukada T, Shirota M, Yura T (1974) Genetic basis of nutritional requirements in Lactobacillus casei. J Bacteriol 120(3):1078–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita T, Deguchi Y, Yajima M, Sakurai T, Yura T (1981) Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol 148(1):64–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niki E (1991) Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54(6 Suppl):1119s–1124s

    CAS  PubMed  Google Scholar 

  • Parvez S, Malik KA, S. Ah Kang, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185

    Article  CAS  PubMed  Google Scholar 

  • Polak-Berecka M, Wasko A, Kordowska-Wiater M, Targonski Z, Kubik-Komar A (2011) Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Braz J Microbiol 42(4):1485–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fondén R, Saxelin M, Collins K, Mogensen G, Birkeland S-E, Mattila-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44(1–2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Sanders ME (2008a) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Suppl 2):S58–S61 (discussion S144–151)

    Article  PubMed  Google Scholar 

  • Sanders ME (2008b) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46:S58–S61

    Article  PubMed  Google Scholar 

  • Saxelin M, Grenov B, Svensson U, Fonden R, Reniero R, Mattila-Sandholm T (1999) The technology of probiotics. Trends Food Sci Technol 10(12):387–392

    Article  CAS  Google Scholar 

  • Schiraldi C, Adduci V, Valli V, Maresca C, Giuliano M, Lamberti M, Carteni M, De Rosa M (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol Bioeng 82(2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Smokvina T, Wels M, Polka J, Chervaux C, Brisse S, Boekhorst J, van Hylckama Vlieg JE, Siezen RJ (2013) Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS One 8(7):e68731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen IA, Bernaerts K, Dens EJ, Geeraerd AH, Van Impe JF (2004) Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol 94(2):137–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Behr.

Ethics declarations

Funding

Parts of the presented work were funded by the German Federal Office of Agriculture and Food in project BLE 2817400111, http://www.ble.de. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brignone, D., Radmann, P., Behr, J. et al. Boosting the growth of the probiotic strain Lactobacillus paracasei ssp. paracasei F19. Arch Microbiol 199, 853–862 (2017). https://doi.org/10.1007/s00203-017-1352-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1352-7

Keywords

Navigation