Skip to main content
Log in

Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of Pseudomonas aeruginosa that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen Agrobacterium tumefaciens. The inhibitory activity is strongly induced when P. aeruginosa is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the biofilm inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extracytoplasmic function σ factor PvdS, or three of the recognized P. aeruginosa quorum-sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of A. tumefaciens biofilm formation is likely distinct from the recently identified P. aeruginosa dispersal factor, cis-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by A. tumefaciens had no effect on biofilm formation by P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An DD, Danhorn T, Fuqua C, Parsek MR (2006) Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc Natl Acad Sci USA 103:3828–3833

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Bandara H, Yau JYY, Watt RM, Jin LJ, Samaranayake LP (2010) Pseudomonas aeruginosa inhibits in vitro Candida biofilm development. BMC Microbiol 10:125–133

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102:11076–11081

    Article  PubMed  CAS  Google Scholar 

  • Barton HA, Johnson Z, Cox CD, Vasil AI, Vasil ML (1996) Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol 21:1001–1017

    Article  PubMed  CAS  Google Scholar 

  • Berne C, Kysela DT, Brun YV (2010) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77:815–829

    CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  PubMed  CAS  Google Scholar 

  • Buckling A et al (2007) Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 62:135–141

    Article  PubMed  CAS  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Chipperfield JR, Ratledge C (2000) Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13:165–168

    Article  PubMed  CAS  Google Scholar 

  • Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31:213–232

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  PubMed  CAS  Google Scholar 

  • Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690

    Article  PubMed  CAS  Google Scholar 

  • Glick R et al (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980

    Article  PubMed  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  PubMed  CAS  Google Scholar 

  • Holcombe LJ et al (2010) Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Soc Gen Microbiol 156:1476–1486

    CAS  Google Scholar 

  • Horie M, Ishiyama A, Fujihira-Ueki Y, Sillanpaa J, Korhonen TK, Toba T (2002) Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. J Appl Microbiol 92:396–403

    Article  PubMed  CAS  Google Scholar 

  • Horswill AR, Stoodley P, Stewart PS, Parsek MR (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–380

    Article  PubMed  CAS  Google Scholar 

  • Irie Y, O’Toole GA, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250:237–243

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MA et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci 100:14339–14344

    Article  PubMed  CAS  Google Scholar 

  • Joshi F, Archana G, Desai A (2006) Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141–147

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) d-Amino acids trigger biofilm disassembly. Science 328:627–629

    Article  PubMed  CAS  Google Scholar 

  • Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochimica Et Biophysica Acta-Biomembranes 1778:1781–1804

    Article  CAS  Google Scholar 

  • Leoni L, Orsi N, de Lorenzo V, Visca P (2000) Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa. J Bacteriol 182:1481–1491

    Article  PubMed  CAS  Google Scholar 

  • Lim B, Beyhan S, Meir J, Yildiz FH (2006) Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol 60:331–348

    Article  PubMed  CAS  Google Scholar 

  • Maeda S et al (2006) Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 255:115–120

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77:549–561

    Article  PubMed  Google Scholar 

  • Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566

    Article  PubMed  CAS  Google Scholar 

  • Merritt PA, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and Biofilm formation. J Bacteriol 189:8005–8014

    Article  PubMed  CAS  Google Scholar 

  • Mowat E et al (2010) Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 313:96–102

    Article  PubMed  CAS  Google Scholar 

  • Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12:789–796

    Article  PubMed  CAS  Google Scholar 

  • Ochsner UA, Vasil ML (1996) Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: Cycle selection of iron-regulated genes. Proc Natl Acad Sci USA 93:4409–4414

    Article  PubMed  CAS  Google Scholar 

  • Ochsner UA, Vasil AI, Johnson Z, Vasil ML (1999) Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein. OmlA J Bacteriol 181:1099–1109

    CAS  Google Scholar 

  • Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip((R)) expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  • Pesci E, Pearson J, Seed P, Iglewski B (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    PubMed  CAS  Google Scholar 

  • Pihl M, Davies JR, de Paz LEC, Svensater G (2010) Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. FEMS Immunol Med Microbiol 59:439–446

    PubMed  CAS  Google Scholar 

  • Platt TG, Bever JD (2009) Kin competition and the evolution of cooperation. Trends Ecol Evol 24:370–377

    Article  PubMed  Google Scholar 

  • Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Frontiers Biosci 8:D661–D686

    Article  CAS  Google Scholar 

  • Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52:1495–1511

    Article  PubMed  CAS  Google Scholar 

  • Rao D, Webb JS, Kjelleberg S (2006) Microbial colonization and competition on the marine alga Ulva australis. Appl Environ Microbiol 72:5547–5555

    Article  PubMed  CAS  Google Scholar 

  • Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, Gelfand MS, Todd JD, Curson ARJ, Johnston AWB (2006) Computational reconstruction of iron- and manganese-responsive transcriptional networks in α-proteobacteria. PLoS Comp Biol 2:1568–1585

    Article  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  PubMed  CAS  Google Scholar 

  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277

    Article  PubMed  CAS  Google Scholar 

  • Singh PK (2004) Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17:267–270

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Tempe J, Petit A, Holsters M, Montagu MV, Schell J (1977) Thermosensitive step associated with transfer of Ti plasmid during conjugation—possible relation to transformation in crown gall. Proc Natl Acad Sci USA 74:2848–2849

    Article  PubMed  CAS  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34:399–413

    Article  PubMed  CAS  Google Scholar 

  • Verran J, Airey P, Packer A, Whitehead KA (2008) Chapter 8 microbial retention on open food contact surfaces and implications for food contamination. In: Allen I, Laskin SS, Geoffrey MG (eds) Advances in applied microbiology. Academic Press, Waltham, pp 223–246

    Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264

    PubMed  CAS  Google Scholar 

  • Weaver VB, Kolter R (2004) Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J Bacteriol 186:2376–2384

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (2009) Iron availability and infection. Biochimica Et Biophysica Acta-General Subjects 1790:600–605

    Article  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487–1487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Andrew Philips and Ying Cao for valuable input on this project. Matthew Parsek was particularly helpful in providing strains of P. aeruginosa. Thomas Platt provided useful suggestions on the manuscript. M.E.H. was funded on the Indiana University Genetics, Molecular and Cellular Sciences Training Grant T32-GM007757. This study was supported by National Institutes of Health grant RO1-GM080546 (C.F.) and through a grant from the Indiana University META-Cyt program funded in part by a major endowment from the Lilly Foundation (C.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Fuqua.

Additional information

Communicated by John Helmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 40.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibbing, M.E., Fuqua, C. Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s). Arch Microbiol 194, 391–403 (2012). https://doi.org/10.1007/s00203-011-0767-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0767-9

Keywords

Navigation