Skip to main content
Log in

Modeling and simulation of a MMC-based solid-state transformer

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a model of a bidirectional MV/LV solid-state transformer (SST) for distribution system studies. A modular multilevel converter configuration is used in the MV side of the STT. The LV side uses a three-phase four-wire configuration that can be connected to both load and generation. The model developed for this work has been implemented in MATLAB/Simulink, and its behavior has been tested by carrying out several case studies under different operating conditions. The simulation results support the feasibility of the SST and its advantages in comparison to the conventional transformer. The paper also includes a discussion of the main model limitations and the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bifaretti S, Zanchetta P, Watson A, Tarisciotti L, Clare JC (2011) Advanced power electronic conversion and control system for universal and flexible power management. IEEE Trans Smart Grid 2(2):231–243

    Article  Google Scholar 

  2. Wang J, Huang AQ, Sung W, Liu Y, Baliga BJ (2009) Smart grid technologies. IEEE Ind Electron Mag 3:16–23

    Article  Google Scholar 

  3. Lai JS (2009) Power conditioning circuit topologies. IEEE Ind Electron Mag 3:24–34

    Article  Google Scholar 

  4. Shiri A (2013) A solid state transformer for interconnection between the medium and the low voltage grid design. Dissertation, Delft University of Technology

  5. She X, Burgos R, Wang G, Wang F, Huang AQ (2012) Review of solid state transformer in the distribution system: from components to field application. In: IEEE energy conversion congress and exposition (ECCE)

  6. Maitra A et al (2009) Intelligent universal transformer design and applications. In: 20th international conference and exhibition on electricity distribution (CIRED)

  7. Heinemann L, Mauthe G (2001) The universal power electronics based distribution transformer, a unified approach. In: IEEE 32nd annual power electronics specialists conference, vol 2, pp 504–509

  8. Falcones Zambrano SD (2011) A DC–DC multiport converter based solid state transformer integrating distributed generation and storage. PhD Thesis, Arizona State University

  9. Std IEC, 60038 (2009) IEC standard voltages. Edition 7

  10. Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596

    Article  Google Scholar 

  11. Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Pérez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580

    Article  Google Scholar 

  12. Rodríguez J, Bernet S, Wu B, Pontt JO, Kouro S (2007) Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans Ind Electron 54(6):2930–2945

    Article  Google Scholar 

  13. Sabahi M, Yazdanpanah Goharrizi A, Hosseini SH, Bana Sharifian MB, Gharehpetian GB (2010) Flexible power electronic transformer. IEEE Trans Power Electron 25(8):2159–2169

    Article  Google Scholar 

  14. González F, Martin-Arnedo J, Alepuz S, Martinez-Velasco JA (2015) EMTP model of a bidirectional multilevel solid state transformer for distribution system studies. In: IEEE PES general meeting

  15. Wang L, Zhang D, Wang Y, Wu B, Athab HS (2016) Power and voltage balance control of a novel three-phase solid state transformer using multilevel cascaded H-bridge inverters for microgrid applications. IEEE Trans Power Electron 31(4):3289–3301

    Article  Google Scholar 

  16. She X, Yu X, Wang F, Huang AQ (2014) Design and demonstration of a 3.6-kV–120-V/10-kVA solid-state transformer for smart grid application. IEEE Trans Power Electron 29(8):3982–3996

    Article  Google Scholar 

  17. Zheng Z, Gao Z, Gu C, Xu L, Wang K, Li Y (2014) Stability and voltage balance control of a modular converter with multi-winding high-frequency transformer. IEEE Trans Power Electron 29(8):4183–4194

    Article  Google Scholar 

  18. Kumar Sahoo A, Mohan N (2014) High frequency link multi-winding power electronic transformer using modular multilevel converter for renewable energy integration. In: 40th annual conference of the IEEE industrial electronics society (IECON)

  19. Wu D, Peng L (2016) Analysis and suppressing method for the output voltage harmonics of modular multilevel converter. IEEE Trans Power Electron 31(7):4755–4765

    Google Scholar 

  20. Wang M, Hu Y, Zhao W, Wang Y, Chen G (2016) Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems. IET Renew Power Gener 10(6):824–833

    Article  Google Scholar 

  21. Mehrasa M, Pouresmaeil E, Zabihi S, Catalao JPS (2016) Dynamic model, control and stability analysis of MMC-HVDC transmission systems. IEEE Trans Power Del. doi:10.1109/TPWRD.2016.2604295

    Google Scholar 

  22. Yu F, Lin W, Wang X, Xie D (2015) Fast voltage-balancing control and fast numerical simulation model for the modular multilevel converter. IEEE Trans Power Del 30(1):220–228

    Article  Google Scholar 

  23. Saad H, Dennetiere S, Mahseredjian J, Delarue P, Guillaud X, Peralta J et al (2014) Modular multilevel converter models for electromagnetic transients. IEEE Trans Power Del 9(3):1481–1489

    Article  Google Scholar 

  24. Solas E, Abad G, Barrena JA, Aurtenetxea S, Cárcar A, Zajac L (2013) Modular multilevel converter with different submodule concepts—Part I: capacitor voltage balancing method. IEEE Trans Ind Electron 60(10):4525–4535

    Article  Google Scholar 

  25. Akagi H (2011) Classification, terminology, and application of the modular multilevel cascade converter (MMCC). IEEE Trans Power Electron 26(11):3119–3130

    Article  Google Scholar 

  26. Rohner S, Bernet S, Hiller M, Sommer R (2010) Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans Ind Electron 57(8):2633–2642

    Article  Google Scholar 

  27. Kumar Sahoo A, Mohan N (2014) A power electronic transformer with sinusoidal voltages and currents using modular multilevel converter. In: International power electronics conference (IPEC-ECCE-Asia)

  28. Shojaei A, Joos G (2013) A topology for three-stage solid state transformer. In: IEEE power and energy society general meeting

  29. Debnath S, Qin J, Bahrani B, Saeedifard M, Barbosa P (2015) Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans Power Electron 30(1):37–53

    Article  Google Scholar 

  30. Guan M, Chen H, Xu Z (2011) Control and modulation strategies for modular multilevel converter based HVDC system. In: 37th annual conference of the IEEE industrial electronics society (IECON)

  31. Yazdani A, Iravani R (2006) A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions. IEEE Trans Power Del 21(3):1620–1629

    Article  Google Scholar 

  32. Xu L, Andersen B, Cartwright P (2005) VSC transmission operating under unbalanced AC conditions—analysis and control design. IEEE Trans Power Del 20(1):427–434

    Article  Google Scholar 

  33. Hagiwara M, Akagi H (2009) Control and experiment of pulse width modulated modular multilevel converters. IEEE Trans Power Electron 24(7):1737–1746

    Article  Google Scholar 

  34. Konstantinou GS, Ciobotaru M, Agelidis VG (2011) Operation of a modular multilevel converter with selective harmonic elimination PWM. In: 8th international conference on power electronics and ECCEA Asia (ICPE and ECCEA)

  35. Ängquist L, Antonopoulos A, Siemaszko D, Vasiladiotis M, Nee HP (2011) Open-loop control of modular multilevel converters using estimation of stored energy. IEEE Trans Ind Appl 47(6):2516–2524

    Article  Google Scholar 

  36. Saeedifard M, Iravani R (2010) Dynamic performance of a modular multilevel back-to-back HVDC System. IEEE Trans Power Electron 25(4):2903–2912

    Article  Google Scholar 

  37. Sahoo AK, Leon R, Mohan N (2013) Review of modular multilevel converters for teaching a graduate-level. Course of power electronics in power systems. University of Minnesota, Saint Paul

    Book  Google Scholar 

  38. Shojaei A, Joos G (2013) A modular solid state transformer with a single- phase medium-frequency transformer. In: IEEE electrical power and energy conference (EPEC)

  39. Lezana P, Silva CA, Rodríguez J, Pérez MA (2007) Zero-steady-state-error input-current controller for regenerative multilevel converters based on single-phase cells. IEEE Trans Ind Electron 54(2):733–740

    Article  Google Scholar 

  40. Helin W, Qiming C, Ming L, Gen C, Liang D (2014) The study of single-phase PWM rectifier based on pr control strategy. In: 26th Chinese control and decision conference (CCDC)

  41. Alepuz S, González F, Martin-Arnedo J, Martinez-Velasco JA (2013) Solid state transformer with low-voltage ride-through and current unbalance management capabilities. In: 39th annual conference of the IEEE industrial electronics society

  42. Martinez-Velasco JA, Alepuz S, González-Molina F, Martin-Arnedo J (2014) Dynamic average modeling of a bidirectional solid state transformer for feasibility studies and real-time implementation. Electr Power Syst Res 117:143–153

    Article  Google Scholar 

  43. Alepuz S, González-Molina F, Martin-Arnedo J, Martinez-Velasco JA (2014) Development and testing of a bidirectional distribution electronic power transformer model. Electr Power Syst Res 107:230–239

    Article  Google Scholar 

  44. Perales MA, Prats MM, Portillo R, Mora JL, Leon JI, Franquelo LG (2003) Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters. IEEE Power Electron Lett 99(4):104–109

    Article  Google Scholar 

  45. Zhang R, Prasad VH, Boroyevich D, Lee FC (2002) Three-dimensional space vector modulation for four-leg voltage-source converters. IEEE Trans Power Electron 17(3):314–326

    Article  Google Scholar 

  46. Vechiu I, Curea O, Camblong H (2010) Transient operation of a four-leg inverter for autonomous applications with unbalanced load. IEEE Trans Power Electron 25(2):399–407

    Article  Google Scholar 

  47. Ebrahimzadeh E, Farhangi S, Iman-Eini H, Blaabjerg F (2016) Modulation technique for four-leg voltage source inverter without a look-up table. IET Power Electron 9(4):648–656

  48. Huber JE, Kolar JW (2014) Volume/weight/cost comparison of a 1 MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer. In: IEEE energy conversion congress and exposition (ECCE)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahim Adabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adabi, M.E., Martinez-Velasco, J.A. & Alepuz, S. Modeling and simulation of a MMC-based solid-state transformer. Electr Eng 100, 375–387 (2018). https://doi.org/10.1007/s00202-017-0510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0510-x

Keywords

Navigation