Skip to main content
Log in

Geometric approach to the MacWilliams Extension Theorem for codes over module alphabets

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

The minimal code length for which there exists an unextendable Hamming isometry of a linear code defined over a matrix module alphabet is found. An extension theorem for MDS codes over module alphabets is proved. An extension theorem for the case of MDS group codes is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constantinescu, I., Heise, W.: On the concept of code-isomorphy. J. Geom. 57(1–2), 63–69 (1996). doi:10.1007/BF01229251

    Article  MathSciNet  MATH  Google Scholar 

  2. Dinh, H.Q., López-Permouth, S.R.: On the equivalence of codes over finite rings. Appl. Algebra Eng. Commun. Comput. 15(1), 37–50 (2004). doi:10.1007/s00200-004-0149-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Dinh, H.Q., López-Permouth, S.R.: On the equivalence of codes over rings and modules. Finite Fields Their Appl. 10(4), 615–625 (2004). doi:10.1016/j.ffa.2004.01.001. http://www.sciencedirect.com/science/article/pii/S1071579704000024

  4. Dyshko, S.: MacWilliams extension theorem for MDS codes over a vector space alphabet. Des. Codes Cryptogr. 82(1), 57–67 (2017). doi:10.1007/s10623-016-0247-y

  5. Dyshko, S.: On extendability of additive code isometries. Adv. Math. Commun. 10(1), 45–52 (2016). doi:10.3934/amc.2016.10.45. http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12283

  6. Forney Jr., G.D.: On the Hamming distance properties of group codes. IEEE Trans. Inf. Theory 38(6), 1797–1801 (2006). doi:10.1109/18.165454

    Article  MathSciNet  MATH  Google Scholar 

  7. Greferath, M., Nechaev, A., Wisbauer, R.: Finite quasi-Frobenius modules and linear codes. J. Algebra Appl. 03(03), 247–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huppert, B.: Character Theory of Finite Groups. No 25 in De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (1998)

    Book  Google Scholar 

  9. Lang, S.: Algebra. Addison-Wesley Series in Mathematics. Advanced Book Program. Addison-Wesley Publishing Company, Boston (1984)

    Google Scholar 

  10. MacWilliams, F.J.: Combinatorial properties of elementary abelian groups. Ph.D. thesis, Radcliffe College (1962)

  11. Miller, G.A.: Groups in which all the operators are contained in a series of subgroups such that any two have only identity in common. Bull. Am. Math. Soc. 12(9), 446–449 (1906). http://projecteuclid.org/euclid.bams/1183418915

  12. Singh, S., Jain, S.: On pseudo injective modules and self pseudo injective rings. J. Math. Sci. 2(1), 125–133 (1967)

    MathSciNet  MATH  Google Scholar 

  13. Solov’eva, F., Honold, T., Avgustinovich, S., Heise, W.: On the extendability of code isometries. J. Geom. 61(1–2), 2–16 (1998). doi:10.1007/BF01237489

    Article  MathSciNet  MATH  Google Scholar 

  14. Stanley, R.P.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  15. Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  16. Wood, J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121(3), 555–575 (1999). http://www.jstor.org/stable/25098937

  17. Wood, J.A.: Foundations of linear codes defined over finite modules: the extension theorem and the MacWilliams identities. In: Codes over rings, Ser. Coding Theory Cryptol. vol. 6, pp. 124–190. World Sci. Publ., Hackensack, NJ (2009). doi:10.1142/9789812837691

  18. Yaraneri, E.: Intersection graph of a module. J. Algebra Appl. 12(05), 1250218 (2013). doi:10.1142/S0219498812502180 . http://www.worldscientific.com/doi/abs/10.1142/S0219498812502180

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhii Dyshko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyshko, S. Geometric approach to the MacWilliams Extension Theorem for codes over module alphabets. AAECC 28, 295–309 (2017). https://doi.org/10.1007/s00200-017-0324-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-017-0324-0

Keywords

Mathematics Subject Classification

Navigation