Skip to main content

Advertisement

Log in

The associations of subclinical atherosclerotic cardiovascular disease with hip fracture risk and bone mineral density in elderly adults

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In the absence of clinically recognized cardiovascular disease, increased carotid artery intimal medial thickness was associated with higher hip fracture risk in older adults, despite its association with higher bone mineral density (BMD). Low ankle brachial index and aortic wall thickness were not associated with fracture risk or BMD.

Introduction

Clinically recognized cardiovascular disease (CVD) is associated with osteoporosis and hip fracture risk, but the relationship of subclinical atherosclerosis to bone health is not certain.

Methods

We followed 3385 participants from the Cardiovascular Health Study (mean age 74.7 ± 5.3 years) with a median time to fracture of 12.1 years who underwent baseline carotid artery and aortic wall ultrasound scanning and ankle brachial blood pressure index (ABI) determinations. A subset underwent bone mineral density (BMD) testing.

Results

There were 494 hip fractures during follow-up. Among persons without clinical CVD, an average standard-deviation increase in a composite score of maximal common and internal carotid artery intimal medial thickness (cIMT) was associated with increased risk of hip fracture [(HR 1.18 [1.04, 1.35]), even though cIMT was positively associated with BMD. Neither aortic wall thickness nor ABI were associated with hip fracture risk or BMD. Among participants with clinical CVD, cIMT and aortic wall thickness, but not ABI, were associated with increased hip fracture risk.

Conclusion

Subclinical cIMT is associated with an increased risk of hip fractures despite being associated with increased BMD. This finding suggests that vascular health, even in its early stages, is linked to bone health, by pathways other than BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szulc P (2012) Association between cardiovascular diseases and osteoporosis. Bonekey Rep 1:144. https://doi.org/10.1038/bonekey.2012.144. eCollection 2012 Aug 8.

  2. den Uyl D, Nurmohamed MT, van Tuyl LH, Raterman HG, Lems WF (2011) (Sub) clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis. Arthritis Res Ther 13(1):R5. https://doi.org/10.1186/ar3224

    Google Scholar 

  3. Reyes-Garcia R, Rozas-Moreno P, Muñoz-Torres M (2011) Cardiovascular disease and bone metabolism. Endocrinol Nutr 58(7):353–359

    CAS  PubMed  Google Scholar 

  4. Farhat GN, Cauley JA (2008) The link between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab 5(1):19–34

    PubMed  PubMed Central  Google Scholar 

  5. Ye C, Xu M, Wang S, Jiang S, Chen X, Zhou X, He R (2016) Decreased bone mineral density is an independent predictor for the development of atherosclerosis: a systematic review and meta-analysis. PLoS One 11(5):e0154740

    PubMed  PubMed Central  Google Scholar 

  6. Laroche M, Pécourneau V, Blain H, Breuil V, Chapurlat R, Cortet B, Sutter B, Degboe Y (2017) GRIO scientific committee. Osteoporosis and ischemic cardiovascular disease. Joint Bone Spine 4(4):427–432

    Google Scholar 

  7. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23(2):205–214

    PubMed  Google Scholar 

  8. Restrepo C, Tracy RE (1975) Variations in human aortic fatty streaks among geographic locations. Atherosclerosis 21(2):179–193

    CAS  PubMed  Google Scholar 

  9. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA (1999) High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of osteoporotic fractures research group. Lancet 354(9183):971–975

    CAS  PubMed  Google Scholar 

  10. Vestergaard P, Rejnmark L, Mosekilde L (2009) Hypertension is a risk factor for fractures. Calcif Tissue Int 84(2):103–111

    CAS  PubMed  Google Scholar 

  11. Tintut Y, Demer LL (2001) Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol 12(5):555–560

    CAS  PubMed  Google Scholar 

  12. Lyle AN, Raaz U (2017) Killing me unsoftly: causes and mechanisms of arterial stiffness. Arterioscler Thromb Vasc Biol 37(2):e1–e11

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A, O'Leary DH, Psaty B, Rautaharju P, Tracy RP, Weiler PG (1991) The cardiovascular health study: design and rationale. Ann Epidemiol 1(3):263–276

    CAS  PubMed  Google Scholar 

  14. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK (1999) For the cardiovascular health study collaborative research group. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med 340:14–22

    PubMed  Google Scholar 

  15. O'Leary DH, Polak JF, Kronmal RA, Savage PJ, Borhani NO, Kittner SJ, Tracy R, Gardin JM, Price TR, Furberg CD (1996) Thickening of the carotid wall. A marker for atherosclerosis in the elderly? Cardiovascular health study collaborative research group. Stroke 27(2):224–231

    CAS  PubMed  Google Scholar 

  16. Newman AB, Siscovick DS, Manolio TA, Polak J, Fried LP, Borhani NO, Wolfson SK (1993) Ankle-arm index as a marker of atherosclerosis in the cardiovascular health study. Cardiovascular heart study (CHS) collaborative research group. Circulation 88(3):837–845

    CAS  PubMed  Google Scholar 

  17. Alcorn HG, Wolfson SK, Sutton-Tyrrell K, Kuller LH, O'Leary D (1996) Risk factors for abdominal aortic aneurysms in older adults enrolled in the cardiovascular health study. Arterioscler Thromb Vasc Biol 16:963–970

    CAS  PubMed  Google Scholar 

  18. Newman AB, Arnold AM, Burke GL, O'Leary DH, Manolio TA (2001) Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography: the cardiovascular health study. Ann Intern Med 134(3):182–190

    CAS  PubMed  Google Scholar 

  19. Virnig B, Durham SB, Folsom AR, Cerhan J (2010) Linking the Iowa Women’s Health Study cohort to Medicare data: linkage results and application to hip fracture. Am J Epidemiol 172:327–333

    PubMed  PubMed Central  Google Scholar 

  20. Barzilay JI, Bůžková P, Fink HA, Cauley JA, Robbins JA, Garimella PS, Jalal DI, Mukamal KJ (2016) Systemic markers of microvascular disease and bone mineral density in older adults: the cardiovascular health study. Osteoporos Int 27(11):3217–3225

    CAS  PubMed  Google Scholar 

  21. Szulc P, Blackwell T, Kiel DP, Schousboe JT, Cauley J, Hillier T, Hochberg M, Rodondi N, Taylor BC, Black D, Cummings, Ensrud KE (2015) Study of osteoporotic fractures (SOF) research group. Abdominal aortic calcification and risk of fracture among older women—the SOF study. Bone 81:16–23

    PubMed  PubMed Central  Google Scholar 

  22. Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0. http://www.R-project.org

    Google Scholar 

  23. Shin J, Park JH, Song YM et al (2017) Association between lumbar bone mineral density and carotid intima-media thickness in Korean adults: a cross-sectional stud of healthy twin study. J Korean Med Sci 32(1):70–76

    PubMed  Google Scholar 

  24. Baldwin MJ, Policha A, Maldonado T et al (2017) Novel association between bone mineral density scores and the prevalence of peripheral artery disease in both sexes. Vasc Med 22(1):13–20

    PubMed  Google Scholar 

  25. Fujihara Y, Nawata H, Honda M et al (2017) Comparative study of the correlation between atherosclerosis and osteoporosis in women in Japan and Mongolia. J Gen Fam Med 18(5):237–243

    PubMed  PubMed Central  Google Scholar 

  26. Frysz M, Deere K, Lawlor DA, Benfield L, Tobias JH, Gregson CL (2016) Bone mineral density is positively related to carotid intima-media thickness: findings from a population-based study in adolescents and premenopausal women. J Bone Miner Res 31(12):2139–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Handy CE, Desai CS, Dardari ZA et al (2016) The association of coronary artery calcium with noncardiovascular disease: the multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging 9(5):568–576

    PubMed  PubMed Central  Google Scholar 

  28. Gravani F, Papadaki I, Ntypa E et al (2015) Subclinical atherosclerosis and impaired bone health in patients with primary Sjogren’s syndrome: prevalence, clinical and laboratory associations. Arthritis Res Ther 17:99. https://doi.org/10.1186/s13075-015-0613-6

    PubMed  PubMed Central  Google Scholar 

  29. Ajeganova S, Gustafsson T, Jogestrand T et al (2015) Bone mineral density and carotid atherosclerosis in systemic lupus erythematosus: a controlled cross-sectional study. Arthritis Res Ther 17:84. https://doi.org/10.1186/s13075-015-0595-4

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Seo SK, Yun BH, Noe EB, Suh JW et al (2015) Decreased bone mineral density is associated with coronary atherosclerosis in healthy postmenopausal women. Obstet Gynecol Sci 58(2):144–149

    PubMed  PubMed Central  Google Scholar 

  31. Mohammadi A, Shateri K, Behzadi F et al (2014) Relationship between intima-media thickness and bone mineral density in postmenopausal women: a cross-sectional study. Int J Clin Exp Med 7(12):5535–5540

    PubMed  PubMed Central  Google Scholar 

  32. Fehérvári M, Sarkadi H, Krepuska M et al (2013) Bone mineral density is associated with site-specific atherosclerosis in patients with severe peripheral artery disease. Calcif Tissue Int 93(1):55–61

    PubMed  Google Scholar 

  33. de Almeida Pereira Coutinho M, Bandeira E, de Almeida JM (2013) Low bone mass is associated with increased carotid intima media thickness in men with type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 6:1–6

    PubMed  PubMed Central  Google Scholar 

  34. Hyde Z, Mylankal KJ, Hankey GJ et al (2013) Peripheral arterial disease increases the risk of subsequent hip fracture in older men: the health in men study. Osteoporos Int 24(5):1683–1688

    CAS  PubMed  Google Scholar 

  35. López-Robles C, Ríos-Fernández R, Callejas-Rubio JL et al (2016) Low bone mass and carotid atherosclerosis in lupus erythematosus patients from Granada, a city in the south of Spain. Lupus 25(2):223–224

    PubMed  Google Scholar 

  36. Wagenknecht LE, Divers J, Register TC et al (2016) Bone mineral density and progression of subclinical atherosclerosis in African-Americans with type 2 diabetes. J Clin Endocrinol Metab 101(11):4135–4141

  37. Gaudio A, Muratore F, Fiore V et al (2015) Decreased bone cortical density at the forearm in subjects with subclinical peripheral arterial disease. Osteoporos Int 26(6):1747–1753

    CAS  PubMed  Google Scholar 

  38. Mendoza-Pinto C, García-Carrasco M, Jiménez-Hernández M, Sánchez-Pérez R, Escárcega RO, Nava-Zavala A, Munguía-Realpozo P, López-Colombo A, Jara LJ, Cervera R (2015) Carotid atherosclerosis is not associated with lower bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Lupus 24(1):25–31

    CAS  PubMed  Google Scholar 

  39. Iranpour D, Pourbehi M, Afroozandeh M et al (2014) Bone mineral density is not related to angiographically diagnosed coronary artery disease. Hell J Nucl Med 17(2):111–115

    PubMed  Google Scholar 

  40. Liang DK, Bai XJ, Wu B et al (2014) Associations between bone mineral density and subclinical atherosclerosis: a cross-sectional study of a Chinese population. J Clin Endocrinol Metab 99(2):469–477

    CAS  PubMed  Google Scholar 

  41. Pedone C, Scarlata S, Napoli N et al (2013) Relationship between bone cross-sectional area and indices of peripheral artery disease. Calcif Tissue Int 93(6):508–516

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim SH, Kim YM, Cho MA, Rhee Y, Hur KY, Kang ES, Cha BS, Lee EJ, Lee HC, Lim SK (2008) Echogenic carotid artery plaques are associated with vertebral fractures in postmenopausal women with low bone mass. Calcif Tissue Int 82(6):411–417

    CAS  PubMed  Google Scholar 

  43. Shaffer JR, Kammerer CM, Rainwater DL, O'Leary DH, Bruder JM, Bauer RL, Mitchell BD (2007) Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 81(6):430–441

    CAS  PubMed  Google Scholar 

  44. Hyder JA, Allison MA, Barrett-Connor E, Detrano R, Wong ND, Sirlin C, Gapstur SM, Ouyang P, Carr JJ, Criqui MH (2010) Bone mineral density and atherosclerosis: the multi-ethnic study of atherosclerosis, abdominal aortic calcium study. Atherosclerosis 209(1):283–289

    CAS  PubMed  Google Scholar 

  45. Jørgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160(6):549–556

    PubMed  Google Scholar 

  46. Longstreth WT Jr, Bernick C, Manolio TA, Bryan N, Jungreis CA, Price TR (1998) Lacunar infarcts defined by magnetic resonance imaging of 3660 elderly people: the cardiovascular health study. Arch Neurol 55(9):1217–1225

    PubMed  Google Scholar 

  47. Rosano C, Brach J, Studenski S, Longstreth WT Jr, Newman AB (2007) Gait variability is associated with subclinical brain vascular abnormalities in high-functioning older adults. Neuroepidemiology 29(3–4):193–200

    PubMed  PubMed Central  Google Scholar 

  48. Arntzen KA, Schirmer H, Johnsen SH, Wilsgaard T, Mathiesen EB (2012) Carotid atherosclerosis predicts lower cognitive test results: a 7-year follow-up study of 4,371 stroke-free subjects—the Tromsø study. Cerebrovasc Dis 33(2):159–165

    PubMed  Google Scholar 

  49. Montero-Odasso M, Bherer L, Studenski S, Gopaul K, Oteng-Amoako A, Woolmore-Goodwin S, Stoole P, Wells J, Doherty T, Zecevic AA, Galinsky D, Rylett RJ, Jutai J, Muir-Hunter S, Speechley M, Camicioli R (2015) Mobility and cognition in seniors. Report from the 2008 Institute of Aging (CIHR) mobility and cognition workshop. Can Geriatr J 18(3):159–167

    PubMed  PubMed Central  Google Scholar 

  50. den Dekker MA, Zwiers M, van den Heuvel ER, de Vos LC, Smit AJ, Zeebregts CJ, Oudkerk M, Vliegenthart R, Lefrandt JD, Mulder DJ (2013) Skin autofluorescence, a non-invasive marker for AGE accumulation, is associated with the degree of atherosclerosis. PLoS One 8(12):e83084

    Google Scholar 

  51. Lutgers HL, Graaff R, de Vries R, Smit AJ, Dullaart RP (2010) Carotid artery intima media thickness associates with skin autofluoresence in non-diabetic subjects without clinically manifest cardiovascular disease. Eur J Clin Investig 40(9):812–817

    Google Scholar 

  52. Barzilay JI, Bůžková P, Zieman SJ, Kizer JR, Djoussé L, Ix JH, Tracy RP, Siscovick DS, Cauley JA, Mukamal KJ (2014) Circulating levels of carboxy-methyl-lysine (CML) are associated with hip fracture risk: the cardiovascular health study. J Bone Miner Res 29:1061–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kondo T, Endo I, Aihara K, Onishi Y, Dong B, Ohguro Y, Kurahashi K, Yoshida S, Fujinaka Y, Kuroda A, Matsuhisa M, Fukumoto S, Matsumoto T, Abe M (2016) Serum carboxy-terminal telopeptide of type I collagen levels are associated with carotid atherosclerosis in patients with cardiovascular risk factors. Endocr J 63(4):397–404

    CAS  PubMed  Google Scholar 

  54. Chen WT, Ting-Fang Shih T, Hu CJ, Chen RC Tu HY (2004) Relationship between vertebral bone marrow blood perfusion and common carotid intima-media thickness in aging adults. J Magn Reson Imaging 20(5):811–816

  55. von Mühlen D, Allison M, Jassal SK, Barrett-Connor E (2009) Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo study. Osteoporos Int 20(12):2071–2078

    Google Scholar 

  56. Wong SY, Kwok T, Woo J, Lynn H, Griffith JF, Leung J, Tang YY (2005) Bone mineral density and the risk of peripheral arterial disease in men and women: results from Mr, and Ms Os, Hong Kong. Osteoporos Int 16(12):1933–1938

    CAS  PubMed  Google Scholar 

  57. Vogt MT, Cauley JA, Kuller LH, Nevitt MC (1997) Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J Bone Miner Res 12(2):283–289

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Barzilay.

Ethics declarations

Conflicts of interest

None.

Appendix

Appendix

Table 5 Studies from 2013 to 2017 of subclinical cardiovascular disease and bone mineral density and/or fracture risk (taken from Pubmed 2013 through March 2018 using term “atherosclerosis” and “fracture”; “atherosclerosis” and “hip fracture”; “atherosclerosis” and “bone mineral density”; “fracture” and “subclinical disease”). Results categorized by the presence or absence of a significant association
Table 6 Hazard ratios for hip fracture associated with subclinical vascular disease in the absence of clinical cardiovascular disease categorized by 5 years follow-up and 10 years follow-up. Results are for fully adjusted models: age, sex, black race, current smoking, alcohol (0 ref., 1–7, > 7 drinks), weight (kg), diabetes, hypertension, eGFR based on cystatin, and estrogen use in women

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzilay, J.I., Buzkova, P., Cauley, J.A. et al. The associations of subclinical atherosclerotic cardiovascular disease with hip fracture risk and bone mineral density in elderly adults. Osteoporos Int 29, 2219–2230 (2018). https://doi.org/10.1007/s00198-018-4611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4611-9

Keywords

Navigation