Skip to main content

Advertisement

Log in

Bone mineral density and microarchitecture in patients with essential thrombocythemia and polycythemia vera

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In this cross-sectional study of 45 patients with myeloproliferative neoplasms, we found no evidence of secondary osteoporosis.

Introduction

Patients with essential thrombocythemia (ET) and polycythaemia vera (PV) are at increased risk of fractures but the underlying mechanisms have not been settled. We conducted a study to assess bone mineral density, microarchitecture, estimated bone strength and global bone turnover in 45 patients with ET or PV.

Methods

Patients were evaluated in a cross-sectional study with dual energy X-ray absorptiometry (DXA) at the hip and spine; high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and distal tibia; and biochemical markers of bone turnover including pro-collagen type 1 N-terminal pro-peptide, osteocalcin, C-terminal cross-linking telopeptide of type 1 collagen and bone-specific alkaline phosphatase. Also, 45 healthy comparisons, matched on age, height and weight with each patient were included as control subjects.

Results

Patients and comparisons had almost identical BMDs: 0.96 (IQR: 0.85–1.07) g/cm2 and 0.96 g/cm2 (IQR: 0.86–1.05 g/cm2), respectively. As well all microarchitecture and estimated bone strength measures were highly similar in the two groups. Levels of bone turnover markers were within reference values in patients.

Conclusion

These results reveal no evidence of secondary osteoporosis among patients with ET or PV. The mechanism behind the increased fracture risk in ET or PV patients remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  1. Farmer S, Horvath-Puho E, Vestergaard H et al (2013) Chronic myeloproliferative neoplasms and risk of osteoporotic fractures; a nationwide population-based cohort study. Br J Haematol 163:603–610

    Article  PubMed  Google Scholar 

  2. Hasselbalch HC (2012) Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 119:3219–3225

    Article  CAS  PubMed  Google Scholar 

  3. Mesa RA, Niblack J, Wadleigh M et al (2007) The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 109:68–76

    Article  PubMed  Google Scholar 

  4. Finazzi G, De Stefano V, Barbui T (2013) Are MPNs vascular diseases? Curr Hematol Malig Rep 8:307–316

    Article  PubMed  Google Scholar 

  5. Marchioli R, Finazzi G, Landolfi R et al (2005) Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol 23:2224–2232

    Article  PubMed  Google Scholar 

  6. Mesa RA, Scherber RM, Geyer HL (2015) Reducing symptom burden in patients with myeloproliferative neoplasms in the era of JAK inhibitors. Leuk Lymphoma:1–39

  7. Frederiksen H, Farkas DK, Christiansen CF et al (2011) Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study. Blood 118:6515–6520

    Article  CAS  PubMed  Google Scholar 

  8. Tefferi A, Guglielmelli P, Larson DR et al (2014) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124:2507–2513 quiz 2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hultcrantz M, Kristinsson SY, Andersson TM et al (2012) Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population-based study. J Clin Oncol 30:2995–3001

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hasselbalch HC (2014) Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol 7:203–216

    Article  CAS  PubMed  Google Scholar 

  11. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farmer S, Vestergaard H, Hansen S et al (2015) Bone geometry, bone mineral density, and micro-architecture in patients with myelofibrosis: a cross-sectional study using DXA, HR-pQCT, and bone turnover markers. Int J Hematol 102:67–75

    Article  CAS  PubMed  Google Scholar 

  13. Oikonomidou PR CC, Yang Z, Crielaard B, Shim JH, Rivella S, Vogiatzi MG. Polycythemia is associated with bone loss and reduced osteoblast activity in mice. Osteoporos Int [Epub ahead of print]

  14. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94: 646–650.

  15. Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  16. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cummings SR, Black DM, Nevitt MC, The Study of Osteoporotic Fractures Research Group et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75

    Article  CAS  PubMed  Google Scholar 

  18. Lorentzon M, Cummings SR. Osteoporosis: the evolution of a diagnosis. J Intern Med 2015.

  19. Chun KJ (2011) Bone densitometry. Semin Nucl Med 41:220–228

    Article  PubMed  Google Scholar 

  20. Kanis JA, Melton LJ 3rd, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  21. Siris ES, Chen YT, Abbott TA et al (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112

    Article  PubMed  Google Scholar 

  22. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  23. Boutroy S, Van Rietbergen B, Sornay-Rendu E et al (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399

    Article  PubMed  Google Scholar 

  24. Schmidt M, Pedersen L, Sorensen HT (2014) The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol 29:541–549

    Article  PubMed  Google Scholar 

  25. Swerdlow SHCE, Harris NL et al (2008) WHO Classification of tumours of the Haematopoietic and Lymphoid Tissues. IARC, Lyon, France

    Google Scholar 

  26. Hansen S, Shanbhogue V, Folkestad L et al (2014) Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcif Tissue Int 94:269–281

    Article  CAS  PubMed  Google Scholar 

  27. Pialat JB, Burghardt AJ, Sode M et al (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50:111–118

    Article  CAS  PubMed  Google Scholar 

  28. Burghardt AJ, Kazakia GJ, Ramachandran S et al (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993

    Article  PubMed  Google Scholar 

  29. Nishiyama KK, Macdonald HM, Buie HR et al (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25:882–890

    PubMed  Google Scholar 

  30. Pistoia W, van Rietbergen B, Lochmuller EM et al (2004) Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside. J Clin Densitom 7:153–160

    Article  CAS  PubMed  Google Scholar 

  31. Macneil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213

    Article  PubMed  Google Scholar 

  32. Hansen S, Hauge EM, Beck Jensen JE, Brixen K (2013) Differing effects of PTH 1-34, PTH 1-84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT. J Bone Miner Res 28:736–745

    Article  CAS  PubMed  Google Scholar 

  33. Farmer S, Ocias LF, Vestergaard H et al (2015) Bone morbidity in chronic myeloproliferative neoplasms. Expert Rev Hematol 8:447–456

    Article  CAS  PubMed  Google Scholar 

  34. Farmer S, Hermann AP, Vestergaard H. [Severe osteoporosis in a patient with polycythaemia vera.]. Ugeskr Laeger 2014; 176.

  35. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    Article  PubMed  Google Scholar 

  36. van der Veer E, van der Goot W, de Monchy JG et al (2012) High prevalence of fractures and osteoporosis in patients with indolent systemic mastocytosis. Allergy 67:431–438

    Article  PubMed  Google Scholar 

  37. Theoharides TC, Boucher W, Spear K (2002) Serum interleukin-6 reflects disease severity and osteoporosis in mastocytosis patients. Int Arch Allergy Immunol 128:344–350

    Article  CAS  PubMed  Google Scholar 

  38. Panteli KE, Hatzimichael EC, Bouranta PK et al (2005) Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol 130:709–715

    Article  CAS  PubMed  Google Scholar 

  39. Rossini M, Zanotti R, Viapiana O et al (2014) Bone involvement and osteoporosis in mastocytosis. Immunol Allergy Clin N Am 34:383–396

    Article  Google Scholar 

  40. Rossini M, Zanotti R, Bonadonna P et al (2011) Bone mineral density, bone turnover markers and fractures in patients with indolent systemic mastocytosis. Bone 49:880–885

    Article  PubMed  Google Scholar 

  41. Barete S, Assous N, de Gennes C et al (2010) Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann Rheum Dis 69:1838–1841

    Article  CAS  PubMed  Google Scholar 

  42. Lacativa PG, Farias ML (2010) Osteoporosis and inflammation. Arq Bras Endocrinol Metabol 54:123–132

    Article  PubMed  Google Scholar 

  43. Oliveira A, Vaz C. The role of sarcopenia in the risk of osteoporotic hip fracture. Clin Rheumatol 2015.

Download references

Acknowledgments

We thank the staff at the Osteoporosis Clinic, Odense University Hospital, for performing the scans. This work has supported by grants from Danish Cancer Society (R90-A6062-14S2) and the Region of Southern Denmark (j.nr. 11/28457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Farmer.

Ethics declarations

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of Ethics Committee of Southern Denmark (file no. S-20110110) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards and by the Danish data protecting agency (file no. 2008-58-0035).

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmer, S., Shanbhogue, V.V., Hansen, S. et al. Bone mineral density and microarchitecture in patients with essential thrombocythemia and polycythemia vera. Osteoporos Int 28, 677–685 (2017). https://doi.org/10.1007/s00198-016-3788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3788-z

Keywords

Navigation